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Abstract: The discrete sources method (DSM) and the discrete dipole 
approximation (DDA) were compared for simulation of light scattering by a 
red blood cell (RBC) model. We considered RBCs with diameters up to  
8 μm (size parameter up to 38), relative refractive indices 1.03 and 1.06, 
and two different orientations. The agreement in the angle-resolved S11 
element of the Mueller matrix obtained by these methods is generally good, 
but it deteriorates with increasing scattering angle, diameter and refractive 
index of a RBC. Based on the DDA simulations with very fine 
discretization (up to 93 dipoles per wavelength) for a single RBC, we 
attributed most of the disagreement to the DSM, which results contain high-
frequency ripples. For a single orientation of a RBC the DDA is comparable 
to or faster than the DSM. However, the relation is reversed when a set of 
particle orientations need to be simulated at once. Moreover, the DSM 
requires about an order of magnitude less computer memory. At present, 
application of the DSM for massive calculation of light scattering patterns 
of RBCs is hampered by its limitations in size parameter of a RBC due to 
the high number of harmonics used for calculations. 
©2010 Optical Society of America 
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1. Introduction 

There is a growing interest in human blood cells, due to an important role they play in human 
health. Biophysical properties of blood cells are sensitive markers for different diseases [1]. 
Some of the efficient modern methods of blood cells analysis are based on light-scattering 
measurements. Spatial distribution and polarizing properties of light scattered by a cell 
depend on its morphology: shape, size, refractive index, and internal structure [2]. Blood cell 
analysis is based on a solution of the inverse light-scattering problem (ILSP), so the accuracy 
of the latter determines efficiency of the former. Mathematical modeling of light scattering 
from a cell, i.e. solution of the direct problem, is an essential stage in development of a 
solution of an ILSP. Since ILSP for a single particle does not have a closed form solution, one 
has to numerically invert a mapping from parameter space to space of light scattering signals, 
based on the approximate description of this mapping. For the latter the direct problem has to 
be solved multiple times (e.g. thousands), each requiring a significant computer resources, 
because blood cells are much larger than the wavelength of the visible light and have complex 
morphology. Therefore, comparison of different codes for simulation of light scattering by 
blood cells in terms of accuracy, computational time, and memory requirements is a relevant 
problem. 
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Several research groups worldwide have simulated light scattering by a red blood cell 
(RBC) [3–7]. The RBC attracts special interest because it is a homogeneous particle with a 
shape varying from a nearly spherical through a biconcave disk to a toroidal one. Therefore, 
an important problem for simulation is to find an appropriate cell model reproducing the real 
cell shape. It is further complicated by variation of refractive index, depending on 
hemoglobin concentration, and relatively large size parameter (typically in the range of 30-60, 
when considering visible light). However, the RBC shape has a symmetry axis, which 
expands a set of applicable light scattering methods. During the last years the following 
methods were used to simulate light scattering by a single RBC: boundary element method 
[3], finite difference time domain method [4,6], discrete dipole approximation (DDA) [5,6], 
and discrete sources method (DSM) [8–10]. Earlier approximate shape models for RBC were 
used, e.g. oblate spheroid [11], which allowed simpler light scattering methods to be applied. 
Several of these methods were compared [7] and it was concluded that DSM is the most 
efficient method, combining the fastest computational speed with the ability to calculate light 
scattering for any directions of incident light at once. However, the comparison was based on 
a RBC with size parameter 28. Moreover, the light was incident along the RBC symmetry 
axis, which led to a considerable performance gain for the DSM. 

We do not consider here approximate light scattering methods, e.g. Wentzel-Kramers-
Brillouin and Rytov approximations [6,12], since they produce satisfactory results only for 
particular light scattering quantities (e.g. near-forward scattering). The methods described 
above are rigorous in the sense that potentially they can be made as accurate as required given 
infinite computer power. However, they do have practical limitations, due to either enormous 
requirements for memory and computational time or numerical instability for a fixed 
arithmetic precision. 

In this manuscript we perform a direct comparison of two most promising methods (DDA 
and DSM) in simulation of light scattering from a single RBC modeled by a biconcave disk 
with size parameter up to 38. We compare the angular dependency of the element S11 of the 
Mueller matrix calculated with both methods varying cellular characteristics within typical 
biological ranges. A special attention is paid to limitations of both methods in terms of size 
parameter of a RBC. 

2. Simulation methods 

2.1 The discrete sources method 

The DSM theory and its numerical scheme has presented in previous papers [9,13], here we 
are just shortly discussing some aspects. The DSM uses an idea of approximate solution 
which is constructed by representing the electromagnetic fields as a finite linear combination 
of the electric and magnetic fields of multipoles distributed inside the scatterer. In case of 
RBC discrete sources (DS) are deposited in a complex plane adjoined to the symmetry axis of 
the particle. This procedure is presented in [14] in details. 

Due to the special construction of the approximate solution, which takes into account the 
rotational symmetry of the scatterer and deposition of DS in the complex plane adjoined to 
the symmetry axis, the matching of the transmission conditions at the particle surface is 
reduced to a set of one-dimensional problems enforced at the particle generatrix. It has been 
found that more stable results can be obtained by using the generalized point-matching 
technique and a pseudo-solution of an over-determined system of linear equations [14]. 

DSM provides the opportunity to control the accuracy of the computational result within 
two steps: (a) control of the internal convergence of the results by increasing the number of 
matching points and DS and (b) checking the residual in least square norm of the boundary 
conditions at the particle surface. In a simulation run the number of matching points where 
the DS amplitudes are defined can be increased until the maximum accuracy of the results is 
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Fig. 1. Profile of the RBC model with diameter 6 μm. 

achieved. The DS number usually is 2-4 times less then the number of matching points. The 
detailed numerical scheme for choosing matching points is described in [14]. 

2.2 The discrete dipole approximation 

The DDA is based on volume discretization of the particle and thus is applicable to scatterers 
of arbitrary shape and internal structure. A couple of extensive reviews of the method are 
available [15,16]. The main limitation of the DDA is its computational complexity, which 
grows proportional to the number of volume discretization elements (dipoles). As a numerical 
implementation of the DDA we have used ADDA v.0.79 [17], which is capable of running on 
a cluster of computers parallelizing a single DDA computation [18]. We used the default 
discretization in ADDA, corresponding to 10-11 dipoles per wavelength for RBCs considered 
in this manuscript. Being a general method, the DDA do not employ particle symmetries 
except one particular case. When particle is invariant under rotation by 90° over the 
propagation direction of the incident light, the complete Mueller matrix can be obtained from 
simulation for only one incident polarization [18]. Then, simulation time is twice less than for 
a general case. 

3. Optical model of a RBC 

A mature RBC has a biconcave discoid shell composed by hemoglobin (32%), water (65%), 
and membrane components (3%), all in mass percentage, and does not contain any nucleus 
[19]. The shape of the RBC can be described by several formulae introduced by Skalak et al. 
[20], Fung et al. [21] and Yurkin [22, Chapter 4.3]. In the current study the DSM and the 
DDA were applied to simulate light scattering from an individual RBC with the widely used 
cell shape model introduced by Fung et al. [21]: 

 
2 2 4

0 1 2 0 1 2( ) 1 , 0.187, 1.035, 0.774,R C C C C C C
R R R
ρ ρ ρρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + = = = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
z  

where z and ρ are cylindrical coordinates and D = 2R is the diameter of a RBC (the only free 
parameter in this model). A particular case of D = 6 μm is shown in Fig. 1. The morphology 
data for RBCs from different sources has been reviewed by Yurkin [22, Chapter 4.1]. The 
diameter of a RBC typically varies from 6 to 9 μm, and the real part of the refractive index at 
λ = 0.66 μm falls between 1.39 and 1.41. Imaginary part of the refractive index is about 10−4 
[23], therefore we neglect it in the current study. We also do not consider RBC outer 
membrane, which has a thickness of 7 nm [24]. 
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We compare the simulation methods using the following characteristics of a RBC. 
Diameter is varied from 6 to 8 µm, the upper limit being determined by the current 
capabilities of the DSM (discussed in Section 4). We consider RBCs suspended in buffered 
saline (refractive index 1.337). Then two considered values of the relative refractive index m 
are 1.03 and 1.06, and wavelength in the medium is fixed at λ = 0.4936 μm (0.66 µm in 
vacuum). Size parameter of the simulated RBCs is from 28 to 38. Incident radiation 
propagates along the z-axis, and we calculate dependence of S11 on the scattering angle θ in 
the xz-plane. Orientation of a RBC is with symmetry axis along either z-axis or x-axis (the 
Euler angle β equals 0° or 90° respectively). 

Since the DDA and the DSM are volume- and surface-based methods respectively, they 
work with different descriptions of the particle model. To make our results independent from 
the shape description we have started from the same RBC profile described by 100 nodes, 
assuming linear interpolation between the nodes. The DSM uses this profile as is, while the 
DDA constructs volume discretization of a RBC from this profile. The latter is automatically 
done by ADDA using the “-shape axisymmetric” command line option [25]. 

4. Results and discussion 

Figures 2–5 present S11(θ) calculated using the DSM and the DDA varying diameter, 
refractive index and orientation of a RBC. The agreement between the two methods is 
generally good however it strongly depends on problem parameters. General tendency is that 
differences increases with θ, D, β, and m. Refractive index has the least effect on the 
difference, when varied inside biological range for a RBC. For β = 0° the agreement is good 
along the whole θ range when D ≤ 7 μm, but there is significant (order of magnitude) 
disagreement for 90° ≤ θ ≤ 120° when D = 7.5 μm. For β = 90° and D ≤ 7.5 μm the agreement 
is good only up to θ = 60°-70°. The largest tested diameter (8 μm) shows principal 
disagreement for all test cases, except the near-forward scattering (up to 15°). 

Since we compare two potentially inaccurate methods, it is desirable to have some 
reference solution to judge the accuracy of both methods independently. However, to the best 
of our knowledge no principally more accurate methods exist for a RBC. Moreover, the 
accuracy of the DSM cannot be easily improved by using extra computational resources. For 
the oblate scatterers of large diameter DSM scheme requires calculation of many Fourier 
harmonics. For example, for RBC with diameter of 6 μm and exciting wavelength  
λ = 0.4936 μm 45 harmonics are needed. This causes numerical instability for large 
orientation angles β. For example, the surface residual for all RBC diameters presented in 
paper does not exceed 0.2% for β = 0°. At the same time the surface residual for β = 90° 
varies from 3% for D = 6 µm to 8% for D = 8 µm. Although the surface residual can be used 
as an internal quality test, it is only an approximate measure of the accuracy of the final 
scattering quantities. 

Therefore, we invested additional computational resources in improving the accuracy of 
the DDA, relying on the proven convergence of the DDA results with refining discretization 
[26]. We performed DDA simulations for a single RBC (D = 7.5 µm, m = 1.03) and two 
orientations (β = 0° and 90°) varying dipole size d from λ/8 to λ/93. Number of dipoles per 
grid varied from 128 to 1408 respectively, and total number of dipoles was up to 6×108. 
These huge simulations were carried out on the Dutch compute cluster LISA [27] using up to 
560 processor cores and up to 770 GB of memory. The results for a particular scattering angle 
(θ = 120°) are shown in Fig. 6. Although this is one of the worst convergence among all θ 
(data not shown), one can clearly see that the DDA results indeed converge with decreasing 
dipole size. However, this convergence is oscillating, complicating the choice of a particular 
reference value or interval. For instance, using extrapolation technique as described by 
Yurkin et al. [28], based on 9 best discretizations, leads to confidence interval 
[0.54,3.14]×10−2 for S11(120°) for the case of β = 0°, which is too wide for practical purposes. 
The extrapolation technique was originally tested on scatterers with wavelength-sized 
scatterers [28] and it requires a separate study to be effectively applied to much larger 
scatterers. 
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Fig. 2. S11(θ) in logarithmic scale for RBCs with D = 6 µm, m = 1.03 (a,c) and 1.06 (b,d), β = 
0° (a,b) and 90° (c,d) simulated with the DSM and the DDA. 
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Fig. 3. Same as Fig. 2, but for D = 7 µm. 
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Fig. 4. Same as Fig. 2, but for D = 7.5 µm. 
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Fig. 5. Same as Fig. 2, but for D = 8 µm. 
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Fig. 6. Convergence of the DDA results for S11(120°) with refining discretization for a RBC 
with D = 7.5 µm, m = 1.03, β = 0° (a) and β = 90° (b). Confidence intervals determined from 
these data (see text) are shown by hatched bands. 
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Fig. 7. Same as Fig. 4 (a,c), but with addition of confidence bounds obtained by DDA 
simulations with dipole sizes from λ/17 to λ/93 (see text). 

In this manuscript we use a simpler approach – confidence interval is determined by 
maximum and minimum of DDA results for dipole sizes less than λ/16. Such confidence 
intervals for S11(120°) are [1.59,2.43]×10−2 and [2.06,2.32]×10−1 for β = 0° and 90° 
respectively (also shown in Fig. 6). One can see that they seem reliable, i.e. further decrease 
of dipole size should not move the DDA results out of these intervals. Similar conclusions can 
be reached for other θ (data not shown), however, this reliability is empirical rather than 
rigorously proven. The confidence bounds obtained by this method for all scattering angles 
are shown in Fig. 7 together with DSM and DDA (with default discretization) results for the 
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Table 1. Time and memory requirements for DSM and DDA methods.a
m = 1.03 m = 1.06 

DSM DDA DSM DDA 
Diameter 

D, µm 
Orientation 

angle β Time, s Time, s RAM, MB Time, s Time, s RAM, MB 

0° 70 71 63 121 

90° 493 144 439 290 

6 

10 angles 510 1359b

391 

456 2539b

432 

0° 92 109 100 205 

90° 728 247 829 512 

7 

10 angles 749 2216b

639 

885 4405b

708 

0° 125 154 110 255 

90° 1012 327 959 631 

7.5 

10 angles 1025 3021b

778 

986 5450b

816 

0° 162 184 147 303 

90° 1462 443 1301 908 

8 

10 angles 1465 3871b

924 

1344 7267b

997 

a Memory requirements of the DDA do not depend on orientation, so only one value per RBC diameter is shown. 
b This value is estimated using the results for β = 0° and 90° (see text). 

same RBCs. Confidence bounds are very narrow and coincident the DDA results for default 
discretization over the major part of the angular range. Assuming the reliability of the 
confidence bounds, we conclude that the DSM is significantly less accurate than the DDA for 
this particular RBC, at least in the range of θ with the largest difference between the two 
methods. Accuracy of the DDA is expected to have small dependence on particle size for 
fixed dipole size [18]. Therefore, we conclude that most of the difference between the results 
of the two methods can be attributed to the inaccuracy of the DSM, in agreement with DSM 
internal error estimates. 

Next, we turn to computational considerations. All production runs, results of which are 
shown in Figs. 2–5, were run on the same computer – AMD Athlon 64 × 2 Dual Core 3800+, 
2.01 GHz with 2 GB RAM. Both codes were run in sequential mode (on a single core). 
Performance results are presented in Table 1. To make a fare comparison we covered a 
complete angle in one scattering plane with step of 0.5° (totally 720 scattering angles) with 
both methods. Additionally to two RBC orientations we consider simultaneous calculation for 
10 values of β (from 0° to 90° with step 10°), which is a typical task when constructing a 
database of light scattering patterns [5,22]. The DDA time for the latter case were estimated 
from measured times t(0°) and t(90°) for two orientations as 9t(0°) + 5t(90°), assuming linear 
dependence of the number of iterations in the DDA on β. The latter implies that simulation 
time for β ≠ 0° linearly changes from 2t(0°) to t(90°) when β increases from 0° to 90°. 
Memory usage for the DSM method is approximately 60 MB for all studied cases (not shown 
in Table 1). Memory requirements of the DDA increase with D and are about an order of 
magnitude larger than that of the DSM. However, it is still small enough to fit into a standard 
desktop computer. 

The dependence of computational time on m is markedly different for the compared 
methods. The DSM speed is comparable or even slightly faster for m = 1.06 than for 1.03, 
while the DDA is about 50% slower for the larger m. This agrees with previous observations 
that the DDA performance is especially good for index-matching particles [18,29]. Apart 
from that the DDA and the DSM show comparable speed for β = 0°, which is a special 
symmetric case for both methods (see Section 2). For a single non-symmetric orientation  
(β = 90°) the DDA is 1.4-3.4 times faster. However, the DSM is 1.5-3 times faster for the set 
of 10 orientations. 

#120225 - $15.00 USD Received 19 Nov 2009; revised 3 Jan 2010; accepted 6 Jan 2010; published 5 Mar 2010 
(C) 2010 OSA 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 5689 



The speed of the DDA, and ADDA in particular, can be improved by running it in a 
parallel mode, employing all available processor cores. About 50% increase in speed is 
expected using two cores [25], but it was not tested in this manuscript. Moreover, 
simultaneous DDA runs for different particle orientations can be accelerated using the ideas 
proposed by Okada [30], but they are not yet implemented in any publicly available DDA 
code. The performance of the DSM for larger oblate scatterers can be improved by use of 
iterative solvers for matrix pseudo-inversion and optimization of DS distribution. 

5. Conclusion 

The DSM and the DDA were compared for simulation of light scattering by a RBC model 
with diameter up to 8 µm (size parameter up to 38). The most surprising result is that overall 
the DDA successfully competes with if not outperforms the DSM, in spite of the 
axisymmetric shape of a RBC. That is probably due to the lower relative refractive index of 
(from 1.03 to 1.06) which results fast convergence of the iterative scheme. For such “weak” 
scatterers even Born approximation provides reasonable results for near-forward scattering 
direction. 

The agreement in the angle-resolved S11 element of the Mueller matrix between the two 
methods is generally good, however it deteriorates with increasing scattering angle, diameter 
and refractive index of a RBC, and when switching from symmetric to non-symmetric 
orientation of a RBC with respect to the incident radiation. Separate convergence study of the 
DDA for a single RBC involving up to 6×108 dipoles showed that most of the disagreement 
between the methods can be attributed to the DSM. The relatively worse accuracy of the 
DSM is also evidenced by its internal error estimates and high-frequency ripples present in its 
results, especially for larger RBC diameter. 

For a single orientation of a RBC the DDA is comparable to or faster than the DSM. The 
important advantages of the DSM are that it requires about an order of magnitude less 
computer memory and that it is faster when a set of particle orientations are considered at 
once. The latter property is favorable for construction of a database of light scattering patterns 
for different sizes, refractive indices, and orientations of a RBC, e.g. to solve an inverse light 
scattering problem. However, application of the DSM to this task is currently hampered by its 
limitations in size parameter of a RBC (up to about 40) due to numerical instability. In 
contrast, the DDA, in particular ADDA code, is easily applicable to larger RBC if sufficient 
memory is available (either shared or distributed among several computers). 
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