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a b s t r a c t

The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective
spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, pro-
ducing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra.
The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional
to each other, but are related to each other through the g tensor. The equilibrium magnetic moment
direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g
anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantiza-
tion axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the
magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to
the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically
polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor
signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor
signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform
spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is
significant.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Paramagnetic centers (PCs) with anisotropic g tensor possess
some unique features compared to isotropic PCs because their
magnetic moment does not coincide with the direction of their
spin vector, and because the magnitude of the magnetic moment
vector varies with the orientation of the spin. Their spins are quan-
tized by the external magnetic field, but usually not along that field
direction. The manifestation of such anisotropy in continuous wave
(CW) EPR experiments has been described by Abragam and Blea-
ney [1, Chapters 3 and 15]. Here we examine features of the spin
dynamics of PCs, having g tensors with significant anisotropy
(dg � g), during the course of pulsed EPR experiments. Typical sys-
tems are paramagnetic metal ions in a diamagnetic host; paramag-
netic nanoparticles; and transition metal cofactors and clusters in
metalloproteins. The rapidly expanding application of pulsed EPR
spectroscopy to such systems, particularly for long-range distance
measurements by DEER and PELDOR methods [2], requires a
thorough understanding of the unique features of spin dynamics
in systems with large g anisotropy.

The EPR signal and the dipolar interactions between PCs are
properties of the magnetic moment, while other features of mag-
ll rights reserved.

.G. Maryasov), mkbowman@
netic resonance are most easily described using spin vectors. The
distinction between magnetic moment and the spin vector has
no practical consequences for PCs with isotropic g because the
two vectors are exactly proportional to each other. This allows
the Bloch equations for spin dynamics to be written in terms of
either the spin vector or the magnetic moment vector for the iso-
tropic PC, but there is no tractable form of the Bloch equations
for anisotropic PCs. The spin vectors move in response to external
fields in a straightforward manner in a rotating frame, yet the mag-
netic moment produces the signal in a microwave (mw) resonator
in the laboratory frame.

These dual aspects of anisotropic PCs have prevented a unified
description of their magnetic resonance. The length of the spin vec-
tors does not depend explicitly on the orientation of the PC and
varies relatively slowly via T1 and T2-like relaxation, while the
magnetic moment is a dynamic property of spin vectors with a
magnitude that depends explicitly on PC orientation and that mag-
nitude oscillates rapidly during precession of the spin vector. The
loss of equivalence between spin and magnetic moment has three
important practical consequences in pulsed magnetic resonance
experiments. The first consequence is that the EPR spectrum mea-
sured by pulse methods has a slightly different lineshape from that
measured by CW methods. The differences need to be considered
when spectral fitting is used to determine spin Hamiltonian
parameters from EPR spectra measured by pulsed methods. The
second important consequence of the inequivalence of spin and
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magnetic moment arises when mw pulses are used to manipulate
spin–spin interactions and local dipolar fields. The magnetic mo-
ments behave quite differently at times from the spins and can
produce rather unexpected results. The final consequence is that
dipolar interactions with other spins can have a lineshape quite
different from the classic Pake-like pattern.

In this contribution we examine the response of the PC to mw
pulses and we consider the free induction decay (FID) and spin
echo signals from PCs with anisotropic g tensors having spins
(either real or effective) of 1/2.

2. Theory

2.1. The spin Hamiltonian and the propagator

The magnetic moment operator, ~̂l, of a PC is related to its spin
operator, b~S, via

~̂l ¼ �b g
$ b~S: ð1Þ

Here b is the Bohr magneton, the minus sign is due to the negative
charge of the electron, and g

$
is the g tensor, or, more precisely, g-

matrix [3]. The properties of g
$

are considered in detail in Abragam
and Bleaney [1], with a recent examination in [4]. The Zeeman
interaction of the PC with an external magnetic field~B0 is described
by the Hamiltonian

bH ¼ �~B0 � ~̂l ¼ b~BT
0 g
$ b~S: ð2Þ

The dot operator between vectors denotes the scalar dot product,
while the superscript T indicates the transpose of vectors (written
as columns) and matrixes. The Hamiltonian (2) has a simple form:

bH ¼ bB0geff
~k � b~S ¼ bB0geff

bSZ ð3Þ

in a coordinate frame whose Z axis is directed along the unit vector
~k defining the quantization axis for the PC’s spin,

k
*

¼ g
$T~b=geff : ð4Þ

Here~b is the unit vector directed along the external magnetic field,
~B0 ¼ B0

~b; and geff is the effective value of the g tensor

geff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~bT G
$
~b

q
¼

ffiffiffiffiffiffiffi
Gzz

p
; ð5Þ

where z is a lab frame axis parallel to~b, and G
$

is the symmetric ten-
sor [1],

G
$
¼ g
$

g
$T : ð6Þ

The spin dynamics resulting from the Hamiltonian (3) with an arbi-
trary magnetic field ~B0ðtÞ is a precession of the spin around the
instantaneous direction of the quantization axis in Eq. (4) with an
instantaneous angular frequency x ¼ bB0geff =�h. It is impossible to
obtain a closed form description of the spin dynamics for arbitrary
~B0ðtÞ but it is possible for certain time-dependent magnetic fields
relevant to magnetic resonance.

2.2. Pulsed EPR

For typical pulsed EPR experiments, the external magnetic field
can be written as a sum of a strong, constant field ~B0 and an alter-
nating, linearly-polarized mw field~B1 ¼ 2B1

~b1 perpendicular to the
static field, so that

~BðtÞ ¼ B0
~bþ 2B1

~b1pðtÞ cosðxt þuðtÞÞ: ð7Þ

The unit vectors ~b and ~B1 define the z and x axes of the laboratory
frame, respectively; B1 is the strength of the mw field; p(t) equals
1 when a mw pulse is applied and 0 otherwise; and u(t) is the phase
of the mw pulse, usually 0, ±p/2, or p.

The system Hamiltonian with the magnetic field of Eq. (7) may
be written as

bH ¼ bB0geff
~k � b~S þ 2bB1pðtÞ cosðxt þuðtÞÞ~K1 �

b~S; ð8Þ

with

~K1 ¼ g
$T~b1: ð9Þ

Although~b and ~b1 (and the static and oscillating fields) are orthog-
onal, the vectors ~k and ~K1 are generally not orthogonal. The cosine
of the angle between them is given by

cosð~k; ~K1Þ ¼~k �~K1=j~K1j ¼ Gxz=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GzzGxx

p
; ð10Þ

so that the effective mw field B1
~K1 has a non-zero projection along

the quantization axis ~k when Gxz – 0. This mw field projection
slightly modifies (in terms of the Magnus expansion, see, e.g. [5])
the spin resonance frequency and transition probability. The
changes are on the order of B1/B0 or higher and usually may be ne-
glected. We will ignore the component of B1

~K1 along~k and define~k1

as the unit vector lying in the same plane as ~K1 and ~k, but perpen-
dicular to ~k,

~k1 ¼ ~K1 �~k ~k �~K1

� �n o
=g1; ð11Þ

where g1 was introduced by Abragam and Bleaney [1, Eq. (3.10)] as

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gxx � G2

xz=Gzz

q
: ð12Þ

The CW EPR spectrum intensity is proportional to g2
1 [1]. The Ham-

iltonian (8) becomes

bH ¼ bB0geff
~k � b~S þ 2bB1g1pðtÞ cosðxt þuðtÞÞ~k1 �

b~S: ð13Þ

The static and mw effective magnetic fields, B0
~k and B1

~k1, in Eq. (13)
are orthogonal even for PCs with very anisotropic g tensors and are
readily transformed into a rotating frame. However the anisotropy
causes the rotating frame to differ in important ways from the stan-
dard rotating frame (SRF) used in magnetic resonance. The rotation
axis is parallel to the quantization axis of the spin~k, but not always
to the static field~b, producing a tilted rotating frame (TRF) that gen-
erally lies at some angle with respect to the lab axis system. Appen-
dix A provides a detailed derivation of the rotating frame
Hamiltonian.

The linearly-polarized mw field can be written as a sum of two
counter-rotating, circularly-polarized fields,

2 cosðxt þuðtÞÞ~k1 ¼ cosðxt þuðtÞÞ~k1 þ sinðxt þuðtÞÞ~k2

þ cosðxt þuðtÞÞ~k1 � sinðxt þuðtÞÞ~k2 ð14Þ

where the unit vector

~k2 ¼~k�~k1; ð15Þ

is chosen so that ~k1;
~k2;

~k form an orthonormal, right-hand coordi-
nate system in the lab frame. Fig. 1A shows the lab frame with z
and x axes defined by the B0 and B1 fields respectively, while the
TRF, in Fig. 1B, has axes ~k1;

~k2 and ~k, tilted by g
$T . In the new TRF,

the Hamiltonian (13) with the results of Appendix A becomes

bHTRF ¼ ðbB0geff � �hxÞ~k � b~S þ bB1g1pðtÞ ~k1 �
b~S cos uþ~k2 �

b~S sin u
� �

:

ð16Þ

The system propagator bUp describing the effect of a mw pulse of
length tp may be written
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Fig. 1. (A) Laboratory frame and (B) tilted rotating frame (TRF). The TRF is obtained
from the lab frame by mapping its axes by gT as described in text. The TRF basis set
is labeled by the vectors. (C) The spin vector rotating in a plane perpendicular to its
quantization axis ~k during the free precession period. (D) The magnetic moment
dynamics obtained by mapping the spin vector into the lab frame by g. Spin
components mapped onto the x–y plane, produce an elliptically-polarized magnetic
moment path in the lab x–y plane perpendicular to ~b. This double mapping makes
all measurable quantities depend on G and on the signature of g.
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ÛpðtpÞ ¼ exp � ibHTRFtp

�h

( )
¼ Ê cos

Xtp

2
� 2i~jX �

b~S sin
Xtp

2
; ð17Þ

where bE is the unit operator in spin space, X is the angular spin pre-
cession or Rabi frequency in the TRF around the effective magnetic
field direction,~jX,

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þx2

1

q
; ð18Þ

D ¼ x0 �x; ð19Þ

x0 ¼ bB0geff =�h; ð20Þ

x1 ¼ bB1g1=�h; ð21Þ

~jX ¼
1
X

D~kþx1ð~k1 cos uþ~k2 sinuÞ
h i

: ð22Þ

Local fields, such as hyperfine interactions, that would contribute to
x0 in Eq. (20) are assumed, for simplicity, to be zero. Measurements
of a pulsed EPR signal usually are performed in the absence of mw
irradiation, during a final free precession period. The system density
matrix immediately after the last pulse may be calculated using the
propagator

Ûprep ¼ Ûpðtp;NÞÛFðsN�1Þ � � � Ûpðtp;2ÞÛFðs1ÞÛpðtp;1Þ; ð23Þ

where the propagator during a free precession period simplifies to

ÛFðsÞ ¼ Ê cos
Ds
2
� 2i~k � b~S sin

Ds
2
; ð24Þ

with sj the delay between mw pulse j and (j + 1), and N is the num-
ber of pulses in the sequence. The system density matrix immedi-
ately after the pulse sequence is

qprep ¼ ÛprepqeqÛþprep; ð25Þ

where qeq is the density matrix at the start of the pulse sequence,
normally at equilibrium with temperature T.
2.3. Resonance measurements of anisotropic PC

Spin dynamics during free precession after a series of mw
pulses is simple; the properties of the propagator in Eq. (24) are
well known. Willer and Schweiger [6] used a somewhat different
approach to reach an equivalent description of the spin vector for
anisotropic g with axial symmetry. The spin vector rotates around
the quantization axis~k, with no variation parallel to ~k and preces-
sion in the ~k1;

~k2 plane perpendicular to ~k. The spin vector traces
out a circle as it precesses as shown in Fig. 1C. Although that circle
is perpendicular to ~k in the TRF, it is tilted relative to the z axis of
the lab frame, so there is an oscillating projection of the spin vector
along the static field B0. The precession frequency of the spin is x0

in the stationary frame and D in the TRF (see Eq. (19)). However,
EPR spectrometers using mw detection [7] do not detect the spins
or the motion of the spins; rather the signal is induced in the mw
resonator by the magnetic moment. The difference between spin
vector and magnetic moment was not appreciated in previous
treatments of pulsed EPR in anisotropic spin systems.

2.4. The precessing magnetic moment

The expectation values, sn, of the spin vector along the n axis of
the TRF, e.g., s1 ¼ h~k1 �

b~Si ¼ Trð~k1 �
b~SqprepÞ simplify expressions for

the density matrix. In the TRF, the density matrix for spins has
the form qprep ¼ 2ðs1

~k1 þ s2
~k2 þ s3

~kÞ � b~S, where normalization for
S = 1/2 is provided by TrðS2

i Þ
�1 ¼ 2. Phase cycling in a pulsed EPR

measurement makes it possible to have the average s3 = 0, so that
the density matrix can be written as

qprep ¼ A sinðWÞ~k1 �
b~S þ cosðWÞ~k2 �

b~S� �
; ð26Þ

The amplitude A and phase W are easily related to sn, allowing the
density matrix to be written in the lab frame as (see Appendix A, Eq.
(A12))

qlab
prep ¼ A sinðW�xtprepÞ~k1 �

b~S þ cosðW�xtprepÞ~k2 �
b~S� �
; ð27Þ

where tprep is the temporal length of the preparatory pulse se-
quence. The density matrix evolves in the lab frame through the
free precession of the spins at x0 around~k, so that for times t > tprep

qlabðtÞ ¼ Û0ðt � tprepÞqlab
prepÛþ0 ðt � tprepÞ: ð28Þ

Here bU0 is the propagator bUF written in the lab frame where D is
replaced by x0, giving the precessing spin vector in Fig. 1C:

qlabðtÞ ¼ A sin W�xtprep �x0ðt � tprepÞ
� �~k1 �

b~S�
þ cos W�xtprep

�
�x0ðt � tprepÞ

�~k2 �
b~S�

¼ A sin W�x0t þ Dtprep
� �~k1 �

b~S�
þ cos W�x0t þ Dtprep

� �~k2 �
b~S� ð29Þ

The Mx and My components of magnetic moment, in the lab frame
are

MxðyÞðtÞ ¼ Tr ð~b1ð2Þ � ~̂lÞqlabðtÞ
n o

¼ �bTr ~bT
1ð2Þ g

$ b~SqlabðtÞ
� �

: ð30Þ

The unit vector~b2 ¼~b�~b1 lies along the lab y axis. Using the results
in Appendix B, the x and y components of the magnetic moment, Eq.
(30) and Fig. 1D, become

MxðtÞ ¼ �
b
2

Ag1 sinðW�x0t þ DtprepÞ; ð31Þ
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MyðtÞ ¼ �
b
2

A sg0 cosðW�x0t þ DtprepÞ þ g2 sinðW�x0t þ DtprepÞ
	 


:

ð32Þ

Here

g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðG

$
Þ

q
g1geff

ð33Þ

g2 ¼
GyxGzz � GyzGzx

g1Gzz
: ð34Þ

s ¼ sgnðdetðg
$
ÞÞ ð35Þ

The vector~k2 is not necessarily perpendicular to~B0, so that the spin
can have an oscillating component along the static magnetic field in
Eqs. (26) and (29). However, Mz for that same system does not be-
cause Mz from qlab(t) in Eq. (29) contains ðg

$T~bÞ �~kn and vanishes. In
other words, the spin components precess, forming a circle in a
plane perpendicular to ~k but not necessarily perpendicular to ~b,
Fig. 1C. However, the magnetic moment vector follows an ellipse re-
stricted to a plane that is perpendicular to the external magnetic
field direction~b. This surprising result is accomplished by variation
of the length of the magnetic moment as it precesses and is required
for conservation of energy. Oscillations of Mz in the lab frame would
produce oscillations of the total energy, which are impossible in a
static magnetic field. Fig. 1 illustrates the relation between the lab-
oratory frame, the tilted spin frame, the oscillating components of
the spin vector and the respective components of the magnetic mo-
ment vector.
4. Results

4.1. The EPR spectrum

The magnetic moment described by Eqs. (31) and (32) is the
sum of two linearly-polarized components along the lab x and y
axes. This magnetic moment is elliptically polarized in the lab
frame, and can also be written as the sum of two counter-rotating,
circularly-polarized components with unequal amplitudes even
though the underlying spin vector is a single, circularly-polarized
entity. The vast majority of magnetic resonance spectrometers
can only measure the linearly-polarized signal from Mx, although
some induction spectrometers using bimodal resonators or a
quasioptical design can measure Mx and My or either circularly-
polarized component [8–10]. We restrict our attention to Mx and
the EPR spectrum from conventional EPR spectrometers and con-
sider induction spectrometers and the independent information
contained in My in a later paper.

Modern pulsed EPR spectrometers use some form of coherent
demodulation to convert or mix the mw Mx(t) signal at x0 to a
much lower frequency signal at D with two quadrature compo-
nents. The resulting signal can be written as a complex quantity:

Mdetðt0Þ ¼ i
b
4

g1A expðiðDt0 �WÞÞ

¼ b
4

g1Að� sinðDt0 �WÞ þ i cosðDt0 �WÞÞ ð36Þ

The Mdet signal contains information only about Mx; all information
of My is lost. Pulsed and CW EPR spectra provide identical informa-
tion about the tensor G [1], because they arise from the same Mx

which depends on g1 and geff, see Eqs. 5, 12, 20, 21, and 31. The only
quantity related directly to the g tensor which is potentially avail-
able from experimental data is the signature, s. Everything else in
the EPR measurement related to g actually depends on G [1]. Unfor-
tunately, s is obtained from My(t) in the lab frame which is not mea-
sured by conventional spectrometers.

4.1.1. Axial symmetry
The g tensor often has axial or near-axial symmetry. In this lim-

iting case, some simplification of equations is possible. Calculations
are more convenient in the molecular frame that diagonalizes G

$

with principal values G\ G\ and G||. The Z axis is defined as the ax-
ial symmetry axis and the X axis is chosen to lie in the plane con-
taining Z and the z axis of the lab frame when these do not
coincide, so that ~b ¼ ðsin h;0; cos hÞT . In this coordinate system,
~b1 ¼ ðcos h cosa; sin a;� sin h cosaÞT is perpendicular to ~b and the
angle a is zero when ~b1 is perpendicular to Y. Then

geff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G? sin2 hþ Gjj cos2 h

q
ð37Þ

g1 ¼
ffiffiffiffiffiffi
G?

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 aþ Gjj

g2
eff

cos2 a

s
ð38Þ

which show that PCs with the same orientation of the external mag-
netic field in the molecular frame, and thus the same h, geff and x0;
nevertheless, can have different g1 because of the angle a. The ori-
entation of ~b1 with respect to the G|| axis is significant. This means
that in ‘powder’ samples, PCs having identical resonance frequen-
cies are not identical because they respond differently to the mw
field that produces the EPR signal.

Only when the unique axis of the g tensor is parallel to the
external magnetic field (h ¼ 0; g2

eff ¼ Gjj, and g1 ¼
ffiffiffiffiffiffi
G?
p

) will all
the resonant PCs behave identically. And only at the g|| feature of
axial PCs can simple mw pulses be used for precise manipulations
of spins because only there will all spins have the same turning an-
gle and x1. This characteristic makes the g|| feature convenient for
B1 field calibration. On the other hand, if the g tensor lacks even ax-
ial symmetry, every point in EPR powder spectrum has a distribu-
tion of turning angles, x1, and different signal amplitudes for PCs
with the same x0. Willer and Schweiger [6] exploited the unique
properties of the g|| feature to measure

ffiffiffiffiffiffi
G?
p

from spin nutation
during a microwave pulse. However, the conversion of spin vector
into magnetic moment in Eq. (23) of that paper confuses the lab
frame with the TRF magnetic moments; a factor of g1 is lost in
the ‘proportional to’ in converting the spin vector into magnetic
moment; and it is implicitly assumed that the measurement is
made at the center of a symmetric EPR spectrum. Yet they suc-
ceeded in measuring g\ = 0.04 ± 0.015 for Ti+3 in sapphire which
is otherwise not readily measurable.

4.1.2. The free induction decay
The simplest pulsed EPR signal is the FID that appears following

a single mw pulse. The propagator in Eq. (23) in this case consists
of the single rightmost operator. A two-step phase cycle in the
form of (u = 0, �), (u = p, +) suppresses the spin component along
~k. (The phase cycle notation indicates that signals or qlab generated
with u = 0 are subtracted from those with u = p.) After this prepa-
ration, we obtain (see Appendix C, Eq. (C4), and Appendix D, Eqs.
(D2) and (D3) for details)

A ¼ 2A1 tanhðe0=2Þ; ð39Þ

W ¼ W1; ð40Þ

where

sin Wi ¼ 2
x1D

AiX
2 sin2 Xtp;i

2
; ð41Þ

cos Wi ¼ �
x1

AiX
sin Xtp;i; ð42Þ
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with

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
x1D

X2 sin2 Xtp;i

2

� �2

þ x1

X
sin Xtp;i

� �2
s

: ð43Þ

Here tp,i is the length of mw pulse i in the sequence. Using Eq. (36)
the FID signal is

MFIDðt0Þ ¼ �i
b
2

g1 tanhðe0=2Þ

� expðiDt0Þ x1

X
sin Xtp;1 þ 2i

x1D

X2 sin2 Xtp;1

2

� �
ð44Þ

It is widely known that the Fourier transform of the FID signal
reproduces the CW magnetic resonance spectrum in the frequency
domain [5,11] for isotropic g. This is no longer the case when the g
tensor is anisotropic. The same frequencies appear in both spectra,
but their relative intensity across the spectrum may be different.
The CW EPR spectrum intensity is proportional to g2

1 [1], while
the intensity of a spin at frequency D in the Fourier Transform of
the FID is

IFIDðDÞ / �ig1
x1

X
sin Xtp;1 þ 2i

x1D

X2 sin2 Xtp;1

2

� �
ð45Þ

which depends nonlinearly on Xtp,1. In the limit of a hard, small
turning-angle pulse, Xtp,1� 1 and x1� D, the IFID is proportional
to g2

1 the same as the CW EPR spectrum. The second factor of g1

comes from expanding the term inside the brackets for small turn-
ing angle. The same result occurs with small turning angle when the
EPR spectrum is reconstructed by sweeping x or B0. The correspon-
dence with the CW spectrum is lost in both limits if a large turning-
angle (�p/2) pulse is used. The problem is not simply that the turn-
ing angle depends on orientation and that it is not possible to uni-
formly excite all spins. Even if there were an ideal composite pulse
with an effective turning angle of p/2, the term in brackets would
ð0;0;0;þÞ; ðp; 0;0;�Þ; ð0;p; 0;�Þ; ðp;p;0;þÞ;
ð0;0;p;�Þ; ðp;0;p;þÞ; ð0;p;p;þÞ; ðp;p;p;�Þ

ð0;p=2;p=2;þÞ; ðp;p=2;p=2;�Þ; ð0;�p=2;p=2;�Þ; ðp;�p=2;p=2;þÞ;
ð0;p=2;�p=2;�Þ; ðp;p=2;�p=2;þÞ; ð0;�p=2;�p=2;þÞ; ðp;�p=2;�p=2;�Þ:

ð52Þ
become unity and the IFID would be proportional to g1 and not the
g2

1 of the CW EPR spectrum.
4.1.3. Two-pulse electron spin echo
A typical phase cycle during generation of the two-pulse spin

echo of
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� �
; 0;

p
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;þ

� �
;

� p;�p
2
;�

� �
; 0;�p

2
;þ

� �
ð46Þ

suppresses terms which produce unwanted signals. The resulting
amplitude A and phase W are

A ¼ �8A1p2 ð47Þ

W ¼ Ds�W1 ð48Þ

with p2 being the probability for the second mw pulse to flip the
spin
p2 ¼
x2

1

X2 sin2 Xtp2

2
: ð49Þ

Substitution of (47)–(49) in Eq. (36) gives the ESE signal,

MESEðt0Þ ¼ �2ibg1A1p2 exp i Dðt0 � sÞ þW1ð Þ½ � ð50Þ

The signal is nearly the same as for isotropic PC [7], but x1, A1, and
p2 now depend on the orientation of the PC in the lab frame. The
refocusing of the magnetic moment as an echo still occurs with
the peak echo intensity at t0 = s, given by

MESEðt0 ¼ sÞ ¼ 2ibg1 tanh
e0

2

� �x3
1

X3 sin2 Xtp2

2

� sin Xtp1 � 2i
D
X

sin2 Xtp1

2

� �
ð51Þ

An EPR spectrum of the PC can be obtained from a two-pulse echo
measurement, for example, by Fourier transformation of the echo
shape or from the total integral of the echo as a function of B0 at
constant x. However, the EPR spectrum is not identical to the CW
EPR spectrum of the PC for the reasons discussed for FID detection.
In the limit of small turning angle, the two-pulse echo response is
proportional to g4

1, while with ‘perfect composite pulses’, it would
be proportional to g1. Although the echo is still a pair of ‘back-to-
back’ FIDs, the shape is slightly different from the single pulse
FID, Eq. (44), and from the Fourier transform of the CW EPR spec-
trum. Fig. 2 compares numerically calculated echo-detected spectra
for different turning angles to the CW EPR spectrum drawn using
the analytic expression in Eqs. (2.149–150) of [12].

4.1.4. Three-pulse electron spin echo
The stimulated echo signal appears after application of three

nominally p/2 mw pulses. It is often likened to a two-pulse spin
echo where the second or p pulse is ‘‘divided’’ into two p/2 ‘‘sub-
pulses’’. A complete phase cycle of
prepares a density matrix in the form given in Eq. (26) (see Eq.
(D10)) with

A ¼ 16 tanh
e0

2

� �
A1A2A3 sinðDs�W1 �W2Þ; W ¼ W3 ð53Þ

giving the signal

Mstðt0Þ ¼ 16ibg1 tanh
e0

2

� �
A1A2A3

� exp i Dðt0 � sÞ þW1 þW2 �W3½ �f g ð54Þ

The 16-step phase cycle in Eq. (52) isolates the stimulated echo
from all other signals including a different three-pulse echo, the vir-
tual echo [13,14], for isotropic and anisotropic PCs. The stimulated
echo signal refocuses at time t0 = s while the virtual echo refocuses
at time t0 = �s, but each echo can be independently recovered using
the appropriate phase cycle [15]. The phase cycle in Eq. (52) or
equivalent forms [16] recovers the stimulated echo; the cycle in Ta-
ble 1 of [17] recovers the virtual echo, while that in Table 10.2.1 of
[7] recovers both echoes.
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Fig. 2. Comparison of two-pulse, echo-detected EPR spectra with the CW absorp-
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detected and the cw shapes never coincide.
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With three identical pulses, Eq. (54) reduces to

Mstðt0Þ ¼ � 16ibg1
x1

X

� �3
tanh

e0

2

� �
sin2 Xtp þ 4

D2

X2 sin4 Xtp

2

( )

� exp iDðt0 � sÞf g sin Xtp � 2i
D
X

sin2 Xtp

2

� �
ð55Þ

with limiting values proportional to g4
1 for small turning angle

pulses and g1 for ‘perfect composite pulses’’; identical to the two-
pulse echo and the virtual echo.

4.2. Pulsed electron–electron double resonance

The probability for the pumping pulse to flip a spin plays an
important role in the measurement of distances between spins in
pulsed electron–electron double resonance (PELDOR) [2] also
known as DEER. This probability is called pB in DEER, but is the
p2 in Eq. (49). When nitroxide spin labels are used in PELDOR mea-
surements, it is necessary to account for their g tensor anisotropy
only with respect to its effect on the Zeeman frequencies which
can produce orientation selection. Their small g anisotropy has
negligible effect on p2. However, when one of the PCs is a metal
center with substantial g anisotropy, the DEER measurement is af-
fected: by the consequent orientation selection; by modification of
the dipolar interaction; and by alteration of the spin dynamics. We
briefly mention the latter two aspects assuming the A spin has
minimal anisotropy (A spins are those whose signal is recorded)
but the B spin has significant anisotropy (the B spins flip because
of a pumping pulse at xB, thereby changing the local dipole field
and modulating the ESE signal of the A spins).

The dipole–dipole interaction spectrum involving an aniso-
tropic PC is different from the standard Pake pattern for isotropic
spins and has been treated in [18–20]. Fortunately, the dipole split-
ting, and consequently the modulation frequencies of the PELDOR
signal, depends only on the external magnetic field direction, ~b,
with respect to the molecular frame. It does not depend on the ori-
entation of the x axis of the lab frame, ~b1, and is readily incorpo-
rated into DEER analysis.

On the other hand, pB does depend explicitly on~b1. Fortunately,
if the orientation of the B spin in disordered systems is uncorre-
lated with the vector between A and B spins, it is necessary to
integrate pB only over the Euler angles relating the lab fame to
the B spin g tensor. In the case of axial symmetry this means inte-
gration over a and h after substitution of Eq. (38) into (49), with tp2

changed to tpB. When the vector between spins has a fixed orienta-
tion relative to the g axes, the dependence of pB on ~b and ~b1 must
be explicitly incorporated into the analysis.

Fig. 3 shows how anisotropy of a rhombic g tensor affects the
averaged pB for different pumping field strengths. For small g
anisotropy, pB oscillates as B1 and the nominal pulse turning angle
increase, but for large anisotropy, pB approaches the form of a lin-
ear ramp. The g anisotropy makes it impossible to characterize a
mw pulse in terms of a single turning angle, particularly in mul-
ti-pulse sequences used to generate echoes. The effective mw field
strength x1 and hence the turning angle x1tp vary with the orien-
tation of ~b1, making it impossible to precisely manipulate spin
dynamics and difficult to optimize measurement conditions. This
situation qualitatively resembles the case of an inhomogeneous
B1 field for isotropic PCs [14].
5. Conclusion

Many similarities exist between the spin dynamics and pulsed
EPR signals of anisotropic PCs in the TRF and those of isotropic
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PCs in the SRF. Yet important differences do arise because the
effective mw magnetic field depends on the orientation of the
molecular frame with respect to the laboratory frame x axis and
because EPR signals arise from the magnetic moment and not the
spin. In the absence of a mw field, the spin vector has a stationary
component parallel to the quantization axis and a single, circu-
larly-polarized component precessing in a plane perpendicular to
the quantization axis. The magnetic moment vector behaves quite
differently. It has a stationary component, parallel to G

$
~B0, which

generally lies in a different direction than B0 or the quantization
axis. More surprisingly, the magnetic moment vector generally
has an elliptically-polarized component, moving strictly perpen-
dicular to the stationary magnetic field ~B0. The signal detected by
a standard pulsed EPR spectrometer measures the mw field in-
duced by the component of the magnetic moment vector parallel
to the linearly polarized field in the spectrometer mw resonator
and misses those perpendicular to the mw field. The signal does
not measure the spin vectors themselves, only some of their spe-
cific components.

Anisotropy of the g tensor introduces an additional parameter
g1 which alters the signal amplitude. This parameter depends only
on the components of the tensor G in the lab frame. The signal
amplitude may differ for PCs having the same orientation of mag-
netic field~B0 to their molecular frames but different orientations of
the mw field ~B1. These amplitude variations are proportional to g
tensor anisotropy and may be neglected for typical organic radi-
cals. This variation causes the EPR spectrum detected using pulsed
EPR methods to depart from the CW EPR signal shape. Only in the
unrealistic asymptotic limit for the FID from a small turning angle
pulse exciting the whole EPR spectrum does the Fourier transform
of the FID coincide with the CW spectrum.
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