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ESR spectra of pairs of paramagnetic centers with anisotropic
g tensors are considered. The centers are assumed to be point
magnetic dipoles with effective spins 1. The dipole coupling
Hamiltonian is discussed. Powder spectra are numerically cal-
culated in the secular approximation for the dipole splitting.
The temperature dependence of the spectral lineshape due to
spin polarization is also studied. Special attention is paid to
pairs containing an unobservable partner with g, = 0. © 1995

Academic Press, Inc.

INTRODUCTION

The dipole-dipole interactions of paramagnetic centers
have been the subject of a number of investigations. The
changes in the magnetic-resonance spectra due to the dipole
coupling contain important information on the structure and
molecular dynamics of paramagnetic compounds (/-7).
Usually when such interactions are treated, the centers are
considered to have an isotropic g factor; this approach is
valid for such species as organic radicals ( /, 6, 7). Sometimes
systems under study include highly anisotropic paramagnetic
ions (3-5). Theoretical (8-10) and experimental (71, 12)
investigations of the dipole line broadening of anisotropic
centers in magnetically diluted solids were performed earlier.
The present work is devoted to the description of the ESR
spectra of pairs with anisotropic nonequivalent spin-4 part-
ners and was initiated by an observation of a pair-like spec-
trum with unusual features (/3). In papers (3, 4), theoretical
treatments of the ion pair spectra were represented, but
manifestations of the g tensor anisotropy in the dipole line-
shape were not studied systematically, because specific sys-
tems were investigated and, thus, too many parameters would
be involved.

In this paper, we first consider briefly one anisotropic
paramagnetic center. In this case, Abragam’s *‘dipole alpha-
bet” should be modified. Powder spectral lineshapes using
first-order perturbation determined by the secular term of
the dipole Hamiltonian were calculated numerically and are

} To whom correspondence should be addressed.

presented in the next section. The temperature dependence
of these spectra is also considered. In the last section, pairs
containing an unobservable partner with g, = 0 are discussed.

AN ISOLATED PARAMAGNETIC CENTER
WITH AN ANISOTROPIC g TENSOR

Paramagnetic centers such as metal ions, atoms, and stable
and labile free radicals shift their energy levels when inter-
acting with an external magnetic field due to the Zeeman
effect. Here we consider only Kramers systems which can
be treated as having (effective) spin 1.

The Zeeman interaction of an external magnetic field B,
with a magnetic moment u of the paramagnetic particle splits
the lowest energy level into the Kramers doublet. The Ham-
iltonian for the interaction is

# = —(By, n). [1]

The magnetic moment of the particle is proportional to its
(effective) spin S:

n=—Bgs, (2]

where § is the Bohr'magneton and £ the so-called g tensor!,
the operator describing the interaction of an effective me-
chanical momentum S with an external magnetic field. The
properties of the g tensor as a diadic operator are discussed
by Abragam and Bleaney (2).

Now we shall introduce some definitions useful for further
discussions. Let all the vectors denoted simply by Latin or
Greek letters in boldface type be columns [in contradiction
to our previous treatment (/0)]. In the coordinate repre-
sentation,

X)
X=1 X2
X3

! In this article, an operator, including a tensor operator, is denoted by a
circumflex, rather than by bold sans serif type.
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To obtain row vectors we shall use the Hermitian transpo-
sition operator x* = (x¥, x¥, x¥). Components of a three-
dimensional vector x, x;, can contain spin operator com-
binations. The scalar product of two vectors a and b

(a,b)=a*sb=3 af b, 3]

is symmetric if the components of both vectors contain Her-
mitian operators. The asterisks denote matrix multiplication.

In general, the operator ¢ for low-symmetry Kramers ions
may have no symmetry elements (2), but this question is
not very important as will be shown later.

Let us discuss the Zeeman Hamiltonian (Eq. [1]). It can
be treated in two ways: (i) as an interaction of the magnetic
moment u with the external magnetic field By (it is written
above in this way), and (ii) as an interaction of some mag-
netic moment ug,

Ho = —fS, [4]
with an effective magnetic field By,
B.r = £7Bo. [5]

Using the second interpretation, one can rewrite the Ham-
iltonian [1],

Z = (B, 8S). [6]

Let the unit vector along the external field be k,,

ky = Bo/ By, (7]

and that along the effective field k,,

ky = £k /('ki, €72 (8]

We can transform Eq. [6] into

# = BerB(k2, S) = BenBSi,, (9]
where S’kz is an operator of the spin projection onto the k;
axis and B.g is an absolute value of the effective magnetic
field. For this quantity from Egs. [5] and [7], we have

Beff = gefTBm [10]

where

gcﬁ=(<é+kl’g‘+kl)1/2~ [11]
Expression [11] for the effective g factor value can be re-
written using the matrix multiplication operation
1/2 .

Ber = { ki *g*&7 xk, } [12]

One can easily see from Eq. [12] that the Zeeman inter-
action Hamiltonian depends on the ¢ tensor convolution
over spin indices. Abragam and Bleaney (2) introduced a
rank 2 tensor G,

G=§+8", [13]
or in the coordinate form

G;= zgiagjw [14]

The tensor G is symmetric and, thus, its principal axes can
be easily found, all the principal values being nonnegative
(2). The effective g factor value can be expressed using G,

Zer = {ki+Gxk )2, [15]

Energy levels and eigenfunctions of the Hamiltonian {9]
can be easily obtained. The eigenfunctions of the Hamilton-
ian are the operator .S}, eigenfunctions |a) and |8) corre-
sponding to +3 and —3J spin projections onto the quanti-
zation axis k,. For the energy levels, we have

€x1/2 = T38aBBo, [16]
which also depend on G.

There exists one more important vector characterizing an
anisotropic PC. Let the secular part of the magnetic moment
be a vector operator, which can be obtained from Eq. [2]
by exchanging S = k,S,,,

< = —BEk,S,. [17]
This operator does commute with the Zeeman Hamiltonian.
Using Egs. [8] and [13], we have from Eq. [17]

u>e = —ngkzks, [18]

where

g={(kTxG*k))/(k}*G*k)} ', [19]
and the direction kj is the external magnetic field direction
k, transformed by the tensor G,
ky = Gk /(8gen). [20]

The operator u>° can be useful for calculations of the en-
ergy level shifis to first order if the perturbation is treated as
a local distortion of the external magnetic field.

Using relationships [8], [13], and [15], we can modify
expression [19] as

g= {k;*g+*g*k2}'/2. 21
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In analogy to Egs. [13] and [14], let us introduce a symmetric
tensor G,
G' =§*+8. [22]

For its components, we have (compare with Eq. [14])

w8 = 2 8a8js- [23]
J
With its help, we obtain
= {k3*G'sky} /2. [24]

The tensor G’ is constructed from & by coqvolution over
spatial indices (instead of spin indices for (). Using defi-
nitions [13] and [22], one can write

G?*= g*G’*g ,

(G')? =§"+Gsg

(25]
[26]

In general, G and G’ may differ if the symmetric and an-
tisymmetric parts of the operator ¢ do not commute. Their
principal values must be the same, but principal axes may
be different.

If the operator g is symmetric

G' =G, [27]
and, instead of Eq. [24], one can write
& = &err(k2). [28]

In this case, £ is equal to the g value calculated not for the
external field B, but for the effective field B.g direction.

Vectors k; and k, coincide when the center is isotropic.
If v is an angle between them,

cos v = (ki, k3) = gen/&. [29]
It is clear from Eq. [29] that
e < &, (30]

where both § and g5 on the right side of Eq. [29] are
nonnegative, and the angle between k; and k, is not more
than w/2.

THE HAMILTONIAN FOR THE DIPOLE-DIPOLE
INTERACTION

The Hamiltonian for the magnetic dipole-dipole inter-
action is well known (/) and for point dipoles has the form

Hy = (ur, )/ = 3(r, w)(r, u2)/r?, [31]
where u, is the magnetic moment of the /th particle, and r
denotes a vector that connects the two particles. For the iso-
tropic paramagnetic centers, where ¢ is proportional to the
unit operator, the Hamiltonian [31] is usually divided into
six parts according to Abragam (/). These parts are known
as a dipole alphabet:

F=(A+B+C+D+E+ Fygg8%/r. [32]
Each “letter” possesses its own character:
A =S$.(1)8.(2)(1 = 3 cos?), [33a]
B={S.(1)$-(2) + $.(1)S.(2)}
X [— 4(1 — 3 cos?8)], [33b]
= {S.(1)S,(2) + $.(1)S.(2)}
X [— 3 sin 6 cos 8 exp(—i¢)], [33c]
13 =C*, [33d]
= S(1)S$,(2) [~ §sin®d exp(—2ip)]. [33e]
F=E* [33f]

Here the orientation of vector r with respect to the laboratory
frame with the Z axis coinciding with the external field di-
rection is denoted by the angles # and ¢ and

S:(J) = 8x()) = iS,()), [34]
J being the partner number.

The most important term for our purposes, 4, is called
secular for clear reasons. When the paramagnetic centers are
isotropic, their quantization axes coincide with the external
field direction and the first-order level shifts depend on matrix
elements of this operator. The pseudosecular term B partially
has an exchange-like character and is important from the
energetic point of view only if g, = g, when both centers
have the same resonance frequency. The other terms couple
states with significantly different energies and influence the
spectrum by permitting ‘‘forbidden” transitions.

The Hamiltonian [32] has the simplest form in the mo-
lecular frame where the Z-axis direction coincides with the
vector r. There it consists only of A- and B-type terms.

Note the symmetry of the operator part of each term in
Eq. [33] with respect to exchange of the partner numbers
1 < 2.

Let us consider -anisotropic paramagnetic centers. Ac-
cording to Abragam’s Iogic, we should divide the Hamilton-
ian [31] into parts having symmetrical features and storing
information about the directions of the guantization axes.
To do it, let us use the spin operator in the form
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S() = k() S, () + S-(H{1() + im(j)}/2

+ S, (N{1) — im(j)}/2. [35]

The vectors 1{j), m(J), k() are unit vectors of the coor-
dinate system associated with the jth center. The k() di-
rection is given by expression [8]. Two other ones are per-
pendicular to it and each other, but their exact directions
are not of great importance here.

Using relations {2} and [35], we can obtain from Eq. [31]

#=(A+B+C+D+E
+ F+ G+ H+ DB r. [36]

To prevent any confusion, we shall not use this version of
the dipole alphabet in this paper after defining each letter
except the term A. Here (after some algebraic transforma-
tions)

A=S5,(DS (2 {(E(Dka(1), £(2)ka2(2))
— 3(n, Z()ky(1))(n, 2(2)k2(2))}.
B={8.(1)S_(2)+S(1NS.(2)}
X (= DIE(ka(1). #(2)ka(2)) — 3(n, &(Dky(1))
X (0, §(2)ka(2)) — Tr[R* =8 (1)x£(2)]

{37a]

+3(n, 8(1)xRxg*(2)n)}, [37b]
C = {$,(NS.(2) + S.(HSL(}C, [37¢)
D=C", [37d]
E=S,(1)S,(2)E, [37¢]
F=E", [37f]
G=1{5(8. ()~ $.(S.2))

X A{((1), §7(1)%£(2)m(2))

—(1(2), 7(2)*£(1)m(1))

—3(ka(2), R**g*(1)n X g7 (2)n)}, [37g]
H = {S,(1)8.(2) = $.(1)Si(2)} H, (37h]
I=H*, [37i]
n=r/r. [375]

The coordinate parts are specified only for the terms A,
B, and G. We use the sign X in expression [37g] to denote
vector multiplication. R denotes the transformation that ro-
tates the coordinate system of the second spin into that of
the first one,

{1(1), m(1), ko(1)} = R{1(2), m(2), k»(2)}. [38]

Let us note the antisymmetry of the operator part of the
terms G, H ,and T with respect to the exchange of the partner
numbers 1 « 2. These terms seem to have tensor rank 1
(14), but the question of the rank is more complex because
the quantization axes of the partners do not in general co-
incide. The term G is also called the spiral exchange or Dzia-
loshinski Hamiltonian (3). The matrix elements of the
Hamiltonian in the form {36 ] and [ 37] can be easily obtained
in the basis diagonalizing the Zeeman interaction of both
centers.

ESR SPECTRA OF THE DIPOLE-COUPLED PAIRS
IN THE SECULAR APPROXIMATION

The secular part of the dipole-dipole interaction between
anisotropic centers is given by the term A (Eq. [37a]).Ina
previous work (70), several representations were derived.
Here we use a variant obtained after substitution of Egs. [8]
and [13] into Eq. [37a],

A= S,(1)S,(2)4, [39]
where
A= {(G(k, G(2)k)) — 3(n, G(1)k,)
X (n, G(2)k) }/ { ger(1)ger(2) } . [40]

The Hamiltonian of the coupled pair in the secular approx-
imation can be written as

# = {8n(1)Si,(1) + gen(2)81,(2) } BBo

+ AB2/ S, (1)S,(2). [41]
Its energy levels are
e(m,, nmy) = BBo{gen(1)m; + geg(2)m> }
+ mmaAB? /1, [42]

where »m; is the spin projection of the ith particle onto its
quantization axis direction k,(i). Four ESR transitions are
allowed: I%’ m2> s I—%9 m2>, ,mh %> A ,ml’ —%>;mls
m, = 3. The value By, of external resonance field for the
first center depends on its orientation, pair geometry, and
quantum number m,,

Boi(my) = { hw — mpAB?/r*}/ { ga(1)B},

w being the working frequency of the ESR spectrometer. The
dipole interaction splits the ESR line of each partner into a
Pake doublet (we consider the case S; = S, = 1). The splitting
value A depends on the geometry of the system in question,

A = AB/[r’gen(1)].

[43]

[44]
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If the particles are isotropic, the mean value of A is equal
to zero and the centers of the doublet components coincide.

Let us consider the results of numerical simulations of
ESR spectra. We have performed the calculations for a simple
model. The pair had a fixed structure (see Fig. 1), its ori-
entation in space being random with respect to the laboratory
frame. The first paramagnetic center was treated as isotropic
and its powder (or glassy) spectrum was calculated.

Figures 2-5 show dipole shapes of the ESR line of the
isotropic center, depending on the pair geometry and the
degree of anisotropy of the second-partner g tensor. The
contribution of the second partner to the ESR spectrum is
negligible because of the large width of its spectral line due
to the g-tensor anisotropy. All the doublets are symmetric
and have the features of spin-1 ion spectra. But the centers
of the doublet components do not coincide. For this reason,
in some cases the amplitudes of the outer extremes exceed
that of the intermediate ones (Fig. 5).

The positions of the specific points (see Fig. 6) of a doublet
component can be approximated by the expressions

i
B

[

E

FIG. 2. The dependence of the isotropic partner spectral contour on
the pair geometry and g-tensor axial anisotropy of the second partner. Each
spectrum is characterized by the corresponding value of the angle 8 specified
inFig. 1: (a)8 =0, (b) 8 = 7n/6, (c) 0 = /4, (d) 8 = x/3, (e) 6 = 5x/12, (f)
6 = =/2. Spectra were numerically calculated for G\/G ) = (g,/g.) = 0.1;
G, = 0.5, suitable isotropic homogeneous broadening being included.

B(py, my) = B\ + 2my8

X {gi’*cos?0 + g3/*sin?0}2/3/r3, [45]

92 cos@ + g2/%sin%0Y%/°, if g, > gy,
B(ps. ma) ~ Bic — ma(B/r)] EE gisin’6}", ey > &y [46]

Ls ifg, <g

/, ifg, <g,
B(p;, ~ B.— rl . 47
(ps3, m2) 1 my(B/ )[max(f, g), ifg > g1 [47]
where is the center of the ESR line of the first partner, and
Bic = hw/{£:8) [48]

FIG. 1. The geometry of a pair of paramagnetic centers. Principal axes
of the G tensors are denoted by numbers with indices corresponding to
partner number. The first partner is assumed to be isotropic for the spectra
in the figures below (the only exception is Fig. 8).

= ghcos?0 + gisin9 }'/12
ghcos?0 + g1 sin?f)?

12/5 60520 + 212/5sin2915/6
{gl £l ] [49]

g8%cos?0 + gf/3sin%

A comparison of the approximated values with the nu-
merically obtained ones is given in Fig. 7. The smaller the
anisotropy, the better the approximation.

When a small axial anisotropy of the first-partner g tensor
is introduced, its spectrum becomes asymmetric. Certain ex-
amples of such spectra are presented in Fig. 8. Their form
is rather sensitive to the orientation of the symmetry axes of
the observed partner with respect to the molecular frame of
the highly anisotropic center.
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FIG. 3. The same as described in the legend to Fig. 2, GG, = 0.2;
G, = 2.35.

TEMPERATURE DEPENDENCE
OF THE PAIR SPECTRA

The temperature dependence of the ESR spectra is deter-
mined mainly by the frequency changes in molecular mo-
tions which modulate the system Hamiltonian and, thus,
cause transformations of the spectra. In this section, we do
not consider such processes. Here we deal with the “static”
temperature influence caused by the Boltzmann distribution
of the energy level populations. This distribution is

n(my, my) = Z 'exp{—[BBo(ger(1)m; + gex(2)my)

+ mimyAB?/r*]/(ksT)}, [50]

FIG. 4. The same as described in the legend to Fig. 2, G/G, = 2;
Gy = 5.74.
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FIG. 5. The same as described in the legend to Fig. 2, GG, = 10;
G, =1

where T'is the absolute temperature and kg is the Boltzmann
constant. Z is the statistical sum

Z= 2 exp{~[BBo(gen(1)m; + gex(2)m;)

my,my

+ mymyAB2/r*)/(ksT) }. [51]

ESR usually deals with the high-temperature limit. For X
band, the temperature at which the Zeeman and thermal
energies become equal is about 0.4 K. Even liquid-helium
temperature seems to be high from this point of view. The
use of 2 mm band devices makes it possible to polarize spins

U

//
P,

FIG. 6. Positions of the specific points of a Pake-doublet component.
The doublet components are symmetric with respect to B, the center of
the first-partner ESR line.
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FIG. 7. Comparison of approximated (solid lines) and numerically ob-
tained (asterisks and dashed lines) positions of the specific points of the pair
slpeclra‘ Lines are numbered as corresponding specific points. (a) g,/g. =
3.(b)g/g, = 5.

sufficiently at helium temperatures (/5). With energies of
the spin levels obtained above to the first order in the per-
turbation, the following relation must hold,
Bomin { ger(1), gen(2)} > max|A4[8/r>.  [52]
The above notes and expression [52] allow us to simplify

formulas [50] and [51) by excluding the influence of the
dipole interaction on the level populations

n(my, my) = Z 'exp{ — BByl gerr(1 )

+ gem(2)m;}/(ksT)}, [53]
Z = 4 ch{BBogen(1)/(2ksT)}
X Ch{BBOgeﬂ‘(z)/(szT)}9 [54]

as the summation in Eq. [51] is easily performed for
spins 3.

Now we can compare the relative intensities of the Pake-
doublet components, with their positions being given by Eq.
[43]. These intensities are proportional to the difference in
the population of the appropriate levels:

1,(my) oc th{BBogen(1)/(2ksT )}

X exp{—BBoger(2)m2/(ksT)}. [55]
Taking into account relation [43] and neglecting any dipole
influence on the level populations once more, one can obtain
from Eq. [55]

X exp{ —hwgen(2)my/[Ler(1 )k T ]} {56]

Equation [ 56 ] shows that, if g.q(2) > g.¢(1), the influence
of the second-partner polarization would be sufficient even
at helium temperatures for X band. An experiment of this
kind was performed by Altshuler and co-authors (16) for
the dipole line-broadening studies of diluted species.

The examples of the influence of low-temperature spin
polarization on the dipole lineshape of ESR powder pair
spectra in X band are shown in Fig. 9. One can note that,
for a pair of isotropic centers (Fig. 9B), one component is
suppressed uniformly with decreasing temperature, but when
the second partner is anisotropic ( Fig. 9A), such suppression
becomes inhomogeneous (compare intensities at the posi-
tions of the arrows).

B
L L, |
1 /L - l /%{ 0°
.=,
4 ” | %ﬂi 30°
|
, 60°
ey
% | ‘ 90°
A‘: A
1 ”'y W 120°
R s
s MW ,
~M nj Y 180°
_ 30° 60°  90° 0

FIG. 8. Manifestations of a small axial anisotropy of the first-partner g
tensor (g, (1) = 2.000, g,(1) = 1.9975) in the ESR spectral contour. G,/G,
of the second partner equals 10. The angle 8 between the vector r and the
molecular axis Z is 70°, r =:7.94 A, (A) Spectrum | corresponds to the
isotropic partner, spectrum 2 to # = 0. (B) The dependence of the line form
of the first partner on the orientation of its symmetry axis with respect to
the molecular frame of the second partner (8, ¢—polar and azimuthal angles,
respectively); the vector r is assumed to be in the X-Z plane.
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A B
FIG. 9. Examples of the temperature dependence of the isotropic partner
ESR spectra in the dipole coupled pair. The second-partner anisotropies
are: (A) Gy/G, = 10 (Gy =7, 0 = =/9). (B) GyG. = 1 (Gy = 4). (1) The
high-temperature limit; (2) 7= 1 K; (3) T=025K; (4) T = 0.125 K.

PAIRS WITH AN ESR-UNOBSERVABLE
PARTNER WITH g, = 0

When a paramagnetic center has an axially symmetric ¢
tensor with g, = 0, it does not absorb microwave power {2}
because the transition probability for the particle is-equai to
zero. Thus, direct ESR investigations are impossible. The
dipole-dipole interaction of the center in question with a
more normal one, denoted here as the first partner, contains
information about the unobservable partner.

The consideration of the dipole interactions above is not
valid for a system with one partner having g, = 0 since, for
the orientations of the pair where the g tensor symmetry axis
is perpendicular to the magnetic-field direction, g.4(2) =
| g, cos 8| == 0 and relation [52] is not fulfilled.

To solve this problem, we write the system Hamiltonian
in the form

# = ge(1)BBom, + B(Hey, £(2)S(2)).  [57]
The H,g value can be obtained in the secular approximation
by summing up the Zeeman term of the second partner ( Eq.
[1]) and the dipole term (Eq. [ 31}), substituting x> defined
by Eqs. [17] and [18] instead of u, in the dipole Hamiltonian:

Hex(m,) = Bo + m(8/r°)§(1)

X {ky(1) = 3(n, ks(1))n}.  [58]

The fact of the #.4 dependence on the quantum number of

the first partner is underlined in the above expression. The
quantization axis direction of the second-partner spin now
can be easily obtained,

k2(2, m;) = §"(2)Hex(m,)/ B(2, my), [59]
and using definition [13], we have
B(2,m)) = {Hir(m)*G(2)*Hen(m)}'?. [60]
The energy levels of our system are
e(my, my) = B{gen(1)Bom, + B(2, my)m,}. [61]

In this situation, when the quantization axis direction of the
second partner depends on the quantum number of the first
one, forbidden transitions with simultaneous spin flips of
both partners are allowed. The intensities of the transitions
with (/¢) and without (/) changing quantum number m,
depend upon the cosine of the angle X between vectors k,(2,
m, = §) and kx(2, m, = —1),

I ¢ g3(1)[1 + cos(x)], [62]

Iy o gi(1)[1 ~ cos(X)], [63]
where gi(1) is the so-called Bleaney factor (2) appearing
due to the anisotropy of the single center transition proba-
bility, and

cos(X) = [Biger(2) — B7g*(1)
X [q**G(2)+q)/(4r®))/[B(2,2)B(2, —1)]. [64]

where

q = k3(1) — 3(n, k;(1))n. [65]
Appropniate equations for the determination of the resonance
field values are

Ler(1)BBoia(m2) = hw — my[ B(2, %) - B(2, “'é)L [66]

2en(1)BBoip(%) = hw = [B(2, 1) + B(2, —1)}/2. [67]

One can see clearly from Eqs. [62]-[64] that peculiarities
in ESR spectra appear only when the first (Zeeman) term
of Eq. [64] has the same order of magnitude as the second
{dipole).

The above consideration is general enough and valid for
the cases when the Zeeman interaction of the first partner
is stronger than the dipole one. In our particular situation,
£.(2)is equal to zero, and the above formulas become sim-
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pler, the g tensor of the second partner in the molecular
frame having the form

00 0
g2y=10 0 0 - [68]
0 0 g||(2)

In this coordinate system, the direction of the vector k,(2,
m, ) does coincide with the symmetry axis of the g tensor (Z
axis of the molecular frame) and may have projection value
+1 onto this direction. For this reason, cos{X) also may
have only two values £1. Let a be a unit vector along the
symmetry axis of the second partner. One can rewrite
expression [60] using Eqs. [65] and [68]:

B(2, m) = g,(2)[(Bo, a) + m(B/r*)g(1)(a, a)|. [69]
And so

cos{X)

[ +1, if 1(Bo,a)| > (8/2r*)&(1)1(q, ), “weak dipole”
—1, ifthe dipole interaction is “‘strong.”

[70]

When the dipole-dipole interaction is weaker than the
Zeeman interaction, only “allowed” transitions take place,
and their resonance-field values can be easily obtained:

Bojalmy) = { hw — m2g|,(2)ﬁ§(1)(q, a)

X sign(Bo, a)/r*}/[gn(1)B8).  [71]

In another case, only forbidden transitions can be observed,

Boir( %) = { hw * g,(2)B88(1)|(q, a)|/(2r))}/

(&enr(1)8). [72]
One can note that the resonance-field values do not change
with the inversion of the vector a: a —» —a. The results of
our numerical calculations are shown in Fig. 10. The first
partner is assumed to be isotropic. All the high-temperature
spectra in the integral form look like the Greek letter II.

CONCLUSION

We have finished our description of the situation where
the only significant factor forming the ESR lineshape is the
dipole-dipole interaction in a pair of paramagnetic centers.
Such a situation seems to be rather exotic but does allow us
to look at the problem systematically.

____________

Ly

FIG. 10. The same as described in the legend to Fig. 2, G, = 7,
G, =0.

Three letters are added to the Abragam’s “dipole al-
phabet.”

It is shown that centers of Pake-doublet components do
not coincide due to the g tensor anisotropy. The component
lineshape is determined by three specific points and, thus, is
similar to spectra of paramagnetic centers with nonaxial g
tensors. Intensities of the components are shown to change
inhomogeniously in comparison with the isotropic case.

Pairs with ESR unobservable partners with g, = 0O are
found to have a II-like integral ESR lineshape.
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