УДК 533.2

О РАБОТАХ ПО ИССЛЕДОВАНИЮ СТАЦИОНАРНЫХ И НЕСТАЦИОНАРНЫХ ВОЛН ГОРЕНИЯ ВОДОРОДНО-КИСЛОРОДНОЙ СМЕСИ НА ТЕРАГЕРЦОВОМ НОВОСИБИРСКОМ ЛАЗЕРЕ НА СВОБОДНЫХ ЭЛЕКТРОНАХ

© 2013 г. А. А. Васильев^{1, 4}, Е. И. Пальчиков^{1, 4}, В. В. Кубарев^{2, 4}, Е. Н. Чесноков³, П. В. Кошляков³, А. В. Долгих¹, И. Ю. Красников¹, К. А. Тен¹

E-mail: palchikov@hydro.nsc.ru

В работе приведены схемы, методики экспериментов, и первые результаты по регистрации фронта горения водородо-кислородной смеси с использованием терагерцевого излучения. Обсуждаются проблемы, связанные с выбором линий поглощения, на которых проводится регистрация. Проведено исследование распределения поглощения на длине волны 166.81 мкм по сечению стационарного водородно-кислородного пламени на горелке. В динамическом эксперименте с распространяющимся вдоль трубы пламенем были сопоставлены результаты, полученные с помощью пироприемников и с помощью детекторов на барьере Шоттки.

DOI: 10.7868/S0367676513090512

МОТИВАЦИЯ

Совместная система уравнений газодинамики и химической кинетики, описывающая распространение волн в химически активных средах, неустойчива. Реализуемые волны горения и детонации и их структуры являются существенно неодномерными.

Пространственная неоднородность фронта значительно усложняет корректные исследования кинетики химических реакций в условиях горения и детонации и поиск ответа на вопрос — каков контур зоны реакции в такой структуре? Знание детальной динамики химических процессов в волнах горения и детонации позволяет создавать более качественные модели для их описания и точнее моделировать (рассчитывать) нестационарные процессы перехода от дозвукового горения к сверхзвуковой детонации.

ПОСТАНОВКА ЗАДАЧИ

В данной работе сделана попытка преодоления существующих трудностей в регистрации детальной динамики реакций за фронтом дозвукового горения газовых смесей с помощью лазера на свободных электронах (Новосибирск).

В терагерцевом диапазоне длин волн от 120 до 200 микрон находится большое число линий поглощения полярных молекул воды и радикалов ОН. Большинство исходных компонентов горения могут быть неполярными молекулами и являются прозрачными (например, O₂, H₂).

Лазер на свободных электронах может быть настроен на любую из линий поглощения излучения в данном диапазоне, что позволит исследовать кинетику волн горения и детонации в газовых смесях.

Таким образом, с помощью лазера в терагерцевом диапазоне могут быть созданы уникальные методики измерения.

ВЫБОР ЛИНИЙ ПОГЛОЩЕНИЯ ВОДЫ, НА КОТОРЫХ ПРОВОДИЛАСЬ РЕГИСТРАЦИЯ

Обычно для измерений концентрации горячего водяного пара рекомендуется линия на 129.4 мкм.

По техническим причинам (в связи с текущим состоянием ЛСЭ) работа проводилась в диапазоне 140—250 мкм. Для данного диапазона понадобилось определить подходящую для измерений линию поглощения. Сложность с выбором линии обусловлена различным изменением поглощения в зависимости от температуры. Для некоторых

¹ Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН), Новосибирск.

² Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН), Новосибирск.

³ Федеральное государственное бюджетное учреждение науки Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук (СО РАН), Новосибирск.

⁴ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный университет", Новосибирск.

Рис. 1. Поглощение паров воды на линии 166.81 мкм.

линий поглощение падает с ростом температуры, для некоторых — растет.

В данных экспериментах использовалась линия на 166.81 мкм.

Для измерения поглощения в пламени кислородно-водородной смеси использовалась охлаждаемая горелка шириной 20 мм, длиной вдоль луча ЛСЭ 80 мм. Пучок ЛСЭ модулировался механическим прерывателем, проходил через пламя и поступал на пироприемник ПМ-4. Сигнал с пироприемника поступал на синхродетектор, туда же поступал опорный сигнал с прерывателя. Таким образом, исключалось влияние ИК-излучения от пламени на пироприемник. Из рис. 1 видно, что поглощение парами воды на линии 166.81 км составило порядка 50–60%.

ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПАРОВ ВОДЫ В ПЛАМЕНИ

Для регистрации пространственного распределения поглощения парами воды использовалась матрица пироприемников Ругосат III с разрешением 124 × 124 пикселей. На рис. 2 показана картина поглощения парами воды на длине волны 166.81 мкм. Пламя стехиометрической смеси 2H₂ + O₂, толщина горящего слоя вдоль пучка ЛСЭ – 80 мм, ширина – 20 мм. Высота пламени – 5 мм.

Видно, что области охлажденного водяного пара находятся с краев горелки и выше, по центру. Непосредственно вблизи поверхности горелки горячие пары воды на используемой линии достаточно прозрачны, однако видны мелкие флуктуации, порядка 1 мм, непосредственно в зоне горения. Интерференционные полосы в правом верхнем углу не относятся к пламени, а являются особенностью тракта регистрации.

Рис. 2. Пространственное распределение интенсивности излучения ЛСЭ, прошедшего через пламя горелки. Темные области соответствуют повышенной концентрации паров воды.

ДИНАМИЧЕСКИЙ ЭКСПЕРИМЕНТ С РАСПРОСТРАНЯЮЩИМСЯ ПЛАМЕНЕМ

В настоящее время для скоростной съемки в терагерцевом диапазоне излучения отсутствуют серийно выпускаемые координатно-чувствительные детекторы. Даже для точечных детекторов выбор невелик, и, как правило, они измеряют косвенные параметры, связанные с терагерцевым излучением. Нами были выбраны два типа детекторов.

На рис. 3 показаны схемы динамических экспериментов с распространяющимся пламенем. Стакан из полипропилена высотой 155 мм и внутренним диаметром 39 мм, открытый снизу, заполнялся стехиометрической смесью 2H₂ + O₂.

Оптический тракт прохождения пучка лазера заполнялся осушенным воздухом для исключения потерь по пути следования. Луч проходил на половине высоты стакана. Воспламенение смеси осуществлялось электрической искрой в нижней части сосуда. С помощью пироприемника и с помощью детектора с диодом на барьере Шоттки измерялся уровень сигнала, прошедшего через канал с пламенем. В случае с детектором на барьере Шоттки применялось синхродетектирование. Опорный сигнал, соответствующий частоте следования банчей, брался с ускорительного тракта. Постоянная времени интегрирования при синхродетектировании составляла 0.3 мкс.

Данные, полученные с помощью пироприемника ПМ-4, показаны на рис. 4. Сигнал с пироприемника обрабатывался с учетом инерционности данного конкретного детектора и канала регистрации (нагрузочного сопротивления).

В связи с емкостным характером пироприемника исходный сигнал носил интегральный характер с некоторым характерным временем инте-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 77 № 9 2013

Рис. 3. Схема динамического эксперимента: *а* – с пироприемником. *б* – с детектором на диоде Шоттки.

грирования. Интегральное уравнение для него имеет вид

$$f^{*}(t) = \int_{-\infty}^{\infty} f(t-t')A(t')dt',$$
 (1)

где $f^*(t)$ — измеренный сигнал, f(t) — исходный сигнал, A(t) — аппаратная функция измерительного тракта.

Для восстановления исходного сигнала применялась обратная свертка (деконволюция) с использованием аппаратной функции системы регистрации. Для этого аппаратная функция канала регистрации была измерена с помощью одиночного наносекундного импульса CO_2 -лазера. Аппаратная функция в первом приближении представляет собой предельно короткую ступеньку с экспоненциальным спадом с измеренным временем спада в *е* раз — 21 мс. При вычислении исходного сигнала интегральное уравнение (1) заменялось системой линейных уравнений, легко приводимой к треугольному виду.

Результаты простого дифференцирования сигнала фотоприемника и результаты обратной свертки с учетом аппаратной функции, показанные на рис. 4, различаются незначительно. Единственная разница — при обратной свертке минимум пропускания наступает на 50 мс, а не на 30 мс, как при дифференцировании.

На рис. 5 показан сигнал при прохождении фронта пламени в стехиометрической смеси 2H₂ + + O₂ с помощью сверхбыстрого приемника на ос-

Рис. 4. Данные, полученные с помощью пироприемника после простого дифференцирования и после обратной свертки с учетом аппаратной функции.

нове диода на барьере Шоттки. Длина волны лазера 167 мкм.

Результаты, полученные с помощью различных типов датчиков, сопоставимы по характерным временам и общему виду сигнала.

Через 5 мс после поджига наступает просветление на время порядка 10—15 мс из-за нагрева паров воды в канале и их вытеснения. Далее наблюдается рост поглощения из-за охлаждения и образования паров воды в результате горения с минимумом пропускания на 50 мс. По интервалу времени между поджигом и приходом фронта горения скорость волны горения равна 15 м · c⁻¹, что в 1.5 раза превышает скорость ламинарного пламени для стехиометрической смеси при атмосферном давлении и свидетельствует о некоторой затурбулизованности смеси в исследуемом стакане.

Рис. 5. Данные, полученные на детекторе с барьером Шоттки.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 77 № 9 2013

выводы

Разработаны схемы экспериментов и приведены предварительные результаты по регистрации горения водородно-кислородной смеси с использованием терагерцевого излучения.

Определены линии поглощения, оптимальные для регистрации в текущем режиме работы ЛСЭ. Проведены эксперименты на линиях поглощения воды с длинами волн 149 и 167 мкм.

С помощью детектора на основе матрицы пироприемников получено пространственное распределение паров воды по сечению водороднокислородного пламени при стационарном горении стехиометрической смеси $2H_2 + O_2$. На длине волны 167 мкм в пламени на толщине горящего слоя 80 мм в разных участках пламени получено поглощение излучения от 50 до 80%.

В динамических экспериментах с распространяющимся пламенем использованы одиночные

пироприемники и сверхбыстрые фотоприемники на основе барьера Шоттки. Исследована динамика горения смеси $2H_2 + O_2$ в цилиндрическом канале со скоростями фронта горения до 15 м · c⁻¹. Данные, полученные с помощью пироприемников и приемников на барьере Шоттки, дают схожие результаты на временах, бо́льших 3 мс.

Усовершенствование методики регистрации позволит перейти от наблюдения низкоскоростных процессов горения (ламинарного и турбулентного) к ускоряющимся пламенам, вплоть до перехода горения в детонацию.

Работа выполнена при финансовой поддержке интеграционного проекта СО РАН № 143, Минобрнауки России и при использовании оборудования ЦКП СЦСТИ. Авторы также благодарны Прууэлу Э.Р. за помощь при обработке исходных данных.