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Abstract: The pseudo-spectral time domain (PSTD) and the discrete dipole 

approximation (DDA) are two popular and robust methods for the 

numerical simulation of dielectric particle light scattering. The present 

study compares the numerical performances of the two methods in the 

computation of the single-scattering properties of homogeneous dielectric 

spheres and spheroids for which the exact solutions can be obtained from 

the Lorenz-Mie theory and the T-matrix theory. The accuracy criteria for 

the extinction efficiency and the phase function are prescribed to be the 

same for the PSTD and DDA in order that the computational time can be 

compared in a fair manner. The computational efficiency and applicability 

of the two methods are each shown to depend on both the size parameter 

and the refractive index of the scattering particle. For a small refractive 

index, a critical size parameter, which decreases from 80 to 30 as the 

refractive index increases from 1.2 to 1.4, exists below which the DDA 

outperforms the PSTD. For large refractive indices (>1.4), the PSTD is 

more efficient than the DDA for a wide size parameter range and has a 

larger region of applicability. Furthermore, the accuracy shown by the two 

methods in the computation of backscatter, linear polarization, and 

asymmetry factor is comparable. The comparison was extended to include 

spheroids with typical refractive indices of ice and dust and similar 

conclusions were drawn. 
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1. Introduction 

Atmospheric particles, e.g., ice crystals and aerosols, play a significant role in radiative 

transfer and remote sensing by scattering and absorbing solar radiation and by terrestrial 

thermal emission. Various numerical methods have been developed to study the single-

scattering properties of these particles [1,2]. Among the existing methods, the method of 

separation of variables (SOV, e.g., the Lorenz-Mie theory) [3] and the T-matrix method [4,5] 

are analytical or semi-analytical methods. The SOV is applicable to both spheres and 

spheroids. Although the T-matrix method is, in principle, applicable to arbitrarily shaped 

particles, its use is normally limited to axially rotational symmetric particles because the 
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simulation is computationally efficient with the particle symmetry. The discrete dipole 

approximation (DDA) [6–11], the finite-difference time domain (FDTD) method [8,12–15], 

and the pseudo-spectral time domain (PSTD) method [16,17] share similar areas of 

applicability and are numerically rigorous methods based on solving Maxwell’s equations for 

electromagnetic scattering by arbitrarily shaped particles. Specifically, the DDA solves an 

electromagnetic integral equation in the frequency domain by discretizing a scattering particle 

in terms of a number of electric dipoles; whereas, both the FDTD and PSTD solve Maxwell’s 

curl equations in the time domain. The FDTD and PSTD differ in the numerical procedure 

chosen to perform the spatial derivative of electromagnetic fields. Specifically, the traditional 

FDTD is based on the second-order finite difference method, and the PSTD employs a Fourier 

pseudo-spectral method. 

The DDA and FDTD have been extensively studied [6–14] and systematically compared 

for simulating light scattering by spheres for the size parameters x up to 80 (x = 2πr/λ, where r 

is the radius of the sphere and λ is the incident wavelength) and the real part of refractive 

index m up to 2 [18]. The numerical performances of the two methods are found to strongly 

depend on the refractive index of the scattering particles; the DDA is faster for smaller m, and 

the FDTD is more computationally efficient for larger values of m. The “cross-over” 

refractive index between the two methods is at approximately 1.4 [18]. 

Stemming from the traditional FDTD method, the PSTD applies the pseudo-spectral 

method, instead of the finite difference method, to calculate the spatial derivatives in 

Maxwell’s equation [19]. The method has been employed to simulate light scattering by non-

spherical ice crystals by Chen et al. [16] and has been improved by Liu et al. [17]. In 

comparison with the finite difference method, the pseudo-spectral method has higher orders of 

accuracy and smaller numerical dispersion errors. The higher order of accuracy means that a 

errors smaller than a given tolerance level can be achieved by PSTD with coarser spatial 

resolution in terms of number of grid points per wavelength, than is needed by FDTD [19]. 

This is one way in which PSTD methods can save CPU time. In time-stepping methods a 

larger time-step can be taken if coarser resolution may be used, which is the second way in 

which PSTD methods can save time. However, the relative strengths of the PSTD in 

comparison with other numerical methods than FDTD are not clearly known. 

Our study compares the use of the PSTD and DDA methods for the numerical simulation 

of light scattering by dielectric particles. Specifically, we focus on spheres and spheroids 

because the accuracy of the results can be well quantified by comparison with their 

counterparts simulated from the Lorenz-Mie theory [3] and the T-matrix method [4,5]. The 

comparison is performed with the same prescribed accuracy criteria for both methods and 

covers a broad range of size parameters (up to 100 for spheres and 50 for spheroids) and non-

absorbing refractive indices. The specific numerical implementations and techniques used will 

be detailed in Section 2, and the comparison and results are discussed in Section 3. Section 4 

reports the conclusions drawn based on the study. 

2. The DDA and PSTD implementations 

Code ADDA, developed by Yurkin and Hoekstra [20], is a widely used DDA implementation 

for light scattering simulations. Using a cluster of processors, the ADDA can simulate light 

scattering by particles much larger than the incident wavelength, and the reported maximum 

size parameters for spheres with refractive indices of 1.05 and 1.2 were 320 [20] and 130 [21], 

respectively. We used ADDA v.0.79 with the default settings for dipole polarizability (lattice 

dispersion relation) and iterative method (quasi minimal residual method). The convergence 

criterion of the iterative solver was set to be 10
−3

; larger than the default value (10
−5

) but 

sufficient to reach the accuracy required by this study. These code settings are identical to 

those used in [18] and correspond to the mainstream DDA. In particular, the code settings are 

similar to the default settings of the DDSCAT [22], another widely used implementation of 

the DDA. Thus, we focus on the practical performance of the ADDA (with default settings), 
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and not on the best theoretically possible. We also believe the conclusions will be valid for the 

DDA method in general. However, we briefly discuss possible consequences of using the 

latest (1.1) version of the ADDA at the end of Section 3. We use spheres and spheroids, both 

of which have symmetry utilized by the ADDA to halve the computational time compared to 

nonsymmetric shapes [20]. 

The PSTD Fortran90 implementation, based on the original algorithm described by Chen 

et al. [16], was improved and applied to large sized particles by Liu et al. [17]. The resultant 

PSTD implementation was parallelized with the OpenMP Application Program Interface 

(API) that supports shared-memory to model parallel computation. Unlike the FDTD, which 

defines the electric and magnetic field components at the edges and face centers of Yee cells 

[12], the PSTD employs a centered grid scheme that specifies all field components at the grid 

cell centers. The Gibbs phenomena, encountered in previous FDTD algorithms, was 

eliminated by truncating the high wavenumber terms in the pseudo-spectral simulations. 

Consequently, the applicability and accuracy of the PSTD was substantially improved and 

allowed the PSTD implementation to be applied to spheres with size parameters up to 200 at 

three ice refractive indices with real parts close to 1.3 [17]. The advanced package “fastest 

Fourier transform in the west” (FFTW) [23] was used to perform the fast Fourier transform 

(FFT) and inverse FFT for the Fourier pseudo-spectral method. A Gaussian pulse multiplied 

by a cosine term (with a center frequency equal to the frequency of interest) was used as the 

incident wave. The uniaxial perfectly matched layer (UPML) absorbing boundary condition 

was applied to truncate the spatial domain [24, 25]. The electromagnetic field values in the 

time domain were transformed to the frequency domain through a discrete Fourier 

transformation. The Kirchhoff surface integral equation was used to transform the near-field 

values into their far-field counterparts [26]. The discrete Fourier transformation involves a 

numerical integration in time, and the time interval of integration sufficient for convergence 

must be determined by experimentation because of its dependence on the particle size and the 

index of refraction. For the results in this study, we found an integration time interval between 

4Tp and 5Tp to be sufficient, where Tp is the time required for the pulse to cross a distance 

equal to the largest diameter of the scattering particle. 

We simulated the single-scattering properties of spheres and spheroids with different sets 

of x and m by using the PSTD and DDA, and compared the results with the exact solutions to 

quantify the accuracies of the two numerical methods. Considering the axially rotational 

symmetry of the scattering particles, one simulation of a linearly polarized incident wave was 

sufficient to yield the 4 by 4 phase matrix P. The phase matrix in one scattering plane was 

calculated with the scattering angle θ varying from 0° to 180° in steps of 0.25°. The extinction 

efficiency Qext and the normalized phase function P11(θ) are the two major quantities in the 

estimation of the accuracy of the two methods, but the asymmetry factor g and phase matrix 

element P12(θ) will also be compared with the analytic solutions. With a specified accuracy 

criteria for the Qext and P11(θ), the computational time required to achieve the criteria became 

the most meaningful parameter to describe the overall performance of the methods. 

The PSTD and DDA discretize the scattering particles with grid points (PSTD) and 

dipoles (DDA), but their computational times are dependent on the number of grid points or 

dipoles in the computational domain and on the number of time steps for the PSTD or 

iterations by the iterative solver of a large linear system for the DDA. For a particle with a 

fixed size, the computational domain scales cubically with the spatial resolution, i.e., the 

number of grid intervals or dipoles per wavelength (λ/∆x). The accuracy of each method 

increases with an increase in the spatial resolution. We increase the spatial resolution until the 

required accuracy criteria are achieved, namely that the relative errors (RE) of Qext are less 

than 1%, and the root mean square relative errors (RMSRE) of P11(θ) are less than 25% (same 

as in [15]). This procedure should not be considered as a one-fits-all solution, because it is not 

suitable for certain applications. In particular, it results in over a 50% relative error in 

backscattering intensity (see Section 3). However, both methods can produce smaller errors at 
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the expense of extra computational resources, and the chosen procedure describes the general 

trends. 

The DDA is the preferred method for optically soft particles (particles with refractive 

indices near 1) [18,21], and may outperform specialized methods, like the discrete sources 

method, for axisymmetric particles [27]. Therefore, our comparison focused on refractive 

indices larger than 1.2, and for spheres, we used a real m ranging from 1.2 to 2.0 in steps of 

0.2. The minimum size parameter for the comparison was 10. To keep the computational time 

manageable and achieve the accuracy criteria, especially for the DDA simulations, the upper 

limit of the x we considered decreased from 100 to 40 as m increased from 1.2 to 2.0. The 

exact sets of x and m involved in the computation are shown in Tables 1 and 2. Moreover, the 

comparison was extended to spheroids with realistic refractive indices of ice (m = 1.312 + 

1.489 × 10
−9

i at 0.532 µm [28]) and mineral dust (approximate m = 1.55 + 0.001i at the visible 

wavelength [29]). The size parameter of a spheroid was specified in terms of its equivalent-

volume sphere. Aspect ratio values a/b of 0.5 (corresponding to oblate spheroids) and 2 

(prolate spheroids) were used, where a was the equatorial radius and b the semi-length of the 

symmetric axis. Spheroid size parameters ranging from 10 to 50 in steps of 10 were chosen 

for the simulation. The propagation direction of the incident field coincided with the 

symmetry axis. All simulations were carried out using a single node containing 8 64-bit 2.8 

GHz processors (a cluster at the Texas A&M Supercomputing Facility). It should be noted 

that for such a shared-memory configuration, parallelization scheme, the ADDA (MPI) is less 

efficient than the OpenMP used in the PSTD, because the MPI was originally designed for 

distributed-memory (multi-node) hardware. However, we estimate that the effect due to the 

difference in the parallelization scheme should not exceed 20% of the computational times 

and, hence, does not influence the final conclusions. 

3. Results 

Table 1 lists both the computational parameters and the simulation results and illustrates the 

numerical performance of the PSTD and DDA. In addition to m and x, Table 1 includes the 

spatial resolution, computational time, REs of Qext, and RMSREs of P11. Indicated within 

parentheses are the results of cases in which the PSTD or DDA failed to reach the prescribed 

accuracy even with a very fine spatial resolution. Computations too time-consuming (taking 

more than 4 days) to reach the prescribed accuracy for the DDA are marked as “N” in the 

table. The PSTD simulations covered all the sets of x and m chosen for the study and achieved 

the prescribed accuracy in 24 of the 28 total pairs. To achieve the prescribed accuracy criteria, 

the spatial resolutions used by the PSTD varied from 10 to 30 without systematic dependence 

on x or m. The accuracy values for the DDA do show significant sensitivity to m. The DDA 

used spatial resolutions smaller than 10 for a refractive index of 1.2 and increased 

monotonically to 40 for m = 2.0. As an extra verification of the DDA results, we note that 

they agree well with those of [18], where an earlier version of the ADDA code (version 0.76) 

was used. In particular, we obtained almost identical values of spatial resolution and 

simulation error for the two ADDA versions when using the same x and m (x ≤ 60, 40, and 10 

for m = 1.2, 1.4, and 2.0, respectively). 

With the same accuracy criteria achieved by the PSTD and DDA simulations, the behavior 

of both with respect to the computational time show substantial variations for different x and 

m. With size parameters up to 100, the PSTD simulations were finished within 9.0 × 10
4
 

seconds (i.e., 25 hours), and the most time-consuming simulation was for a sphere with x = 

100 and m = 1.4. Furthermore, neither the efficiency nor the accuracy of the PSTD was 

significantly influenced by an increase of m. However, the computational time used by the 

DDA simulations increases dramatically with both particle size and refractive index due to the 

simultaneous increases of the spatial resolution, computational domain, and iteration number. 

For example, for m = 1.2, only a few seconds were required for spheres with x = 10 and 20; 

whereas, a sphere with x = 80 took 7.3 × 10
4
 seconds (over 20 hours). When m is larger than 
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1.4, the DDA encounters difficulties with respect to both efficiency and accuracy. A sphere 

with a size parameter of 30 and m = 2.0 took 5.1 × 10
5
 seconds (almost 6 days) and obtained 

Qext with RE of 2.0% and P11 with RMSRE of 55%. The DDA achieved the prescribed 

accuracy criteria for spheres at a size parameter of 30 for m = 1.6 and only a size parameter of 

10 for m = 1.8 and 2.0. The DDA did not achieve convergence for most large (spheres with x 

> 60 and m = 1.4 or 1.6 and x > 40 and m = 1.8 or 2.0) cases (7 spheres out of 28). 

Table 1. The Comparison of Numerical Performances of the PSTD and ADDA Methods 

for Spheres with Different x and m. 

m x 
Spatial resolution Time, s 

RE of Qext 

(%) 

RMSRE of P11 

(%) 

PSTD DDA PSTD DDA PSTD DDA PSTD DDA 

1.2 10 13 10 2.1 × 101 1.0 × 100 0.34 0.071 5.6 0.74 

20 7.7 7.5 4.4 × 101 2.0 × 100 0.0083 0.54 8.5 13 

30 20 6.7 3.0 × 103 1.2 × 101 0.83 0.25 4.2 16 

40 30 7.5 3.9 × 104 1.2 × 102 1.0 0.43 25 19 

60 18 8.4 2.5 × 104 2.3 × 103 0.91 0.20 15 13 

80 9.2 9.4 1.0 × 104 7.3 × 104 0.26 0.62 19 19 

100a 9.3 10 2.3 × 104 2.7 × 104 0.050 0.25 18 13 

1.4 10 22 15 2.3 × 102 2.0 × 100 0.30 0.69 6.1 12 

20 22 25 3.3 × 103 1.1 × 103 0.78 0.98 10 22 

30 11 17 3.8 × 102 9.8 × 103 0.87 0.74 19 25 

40 18 18 6.7 × 103 1.8 × 104 0.99 0.68 18 15 

60 18 N 2.9 × 103 N 1.0 N 21 N 

80 (9.2) N (1.2 × 104) N (0.32) N (38) N 

100 13 N 8.9 × 104 N 0.47 N 23 N 

1.6 10 12 25 4.9 × 101 5.4 × 101 0.85 0.76 14 7.1 

20 (20) (40) (1.1 × 103) (3.2 × 104) (5.4) (5.7) (44) (45) 

30 13 30 8.3 × 102 4.4 × 104 0.78 0.73 25 15 

40 14 (20) 2.7 × 103 (2.4 × 105) 0.23 (1.5) 24 (33) 

60 (18) N (3.2 × 104) N (0.035) N (29) N 

1.8 10 26 35 2.7 × 102 6.4 × 102 0.92 0.88 10 8.8 

20 23 (40) 1.5 × 103 (3.0 × 103) 0.85 (2.7) 10 (19) 

30 19 (25) 3.0 × 103 (9.5 × 104) 0.70 (5.4) 15 (52) 

40 21 N 1.5 × 104 N 0.63 N 19 N 

60 15 N 1.7 × 104 N 0.28 N 22 N 

2.0 10 13 40 5.1 × 101 2.0 × 103 0.90 0.45 16 16 

20 16 (35) 5.6 × 102 (5.0 × 104) 0.58 (8.9) 13 (35) 

30 14 (25) 1.3 × 103 (5.1 × 105) 0.21 (2.0) 21 (55) 

40 (14) N (3.4 × 103) N (2.3) N (26) N 
a The DDA for a sphere with x = 100 and m = 1.2 does not converge with the default iteration method (quasi minimal 

residual), and the Bi-conjugate stabilized method is used instead. 

 

On the contrary, the DDA was very efficient for spheres with small m and x and was one 

to two orders of magnitude faster than the PSTD. However, a critical size parameter existed 

above which the PSTD outperformed the DDA for small refractive indices (1.2 or 1.4) and the 

value of x decreased from 80 to 30 as the refractive index increased from 1.2 to 1.4. For m 

larger than 1.4, the PSTD became more efficient for all size parameters in the range from 10 

to 60 and was almost two orders of magnitude faster than the DDA for spheres with x larger 

than 30. 
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Fig. 1. The relative performances of the PSTD and DDA on the (x, m) plane. The light area 

corresponds to the DDA-preferred region and the dark area to the PSTD-preferred region. 

In the (x, m) domain of this study, Fig. 1 clearly illustrates the strengths of both the PSTD 

and DDA. In the figure, the dark region corresponds to the parameters of x and m for which 

the PSTD simulations outperformed the DDA, and the light region indicates the area where 

the DDA was more efficient. The PSTD area of high performance is at the top right of the (x, 

m) plane, and the DDA counterpart is at the lower left. The region in Fig. 1 is made up of only 

the (x, m) sets we used for comparison, but both methods have been applied to larger sizes 

without significant loss of accuracy [17,21]. Comparing Fig. 1 with results of [18], we can 

conclude that the PSTD is similar to the FDTD when compared with the DDA, except for an 

increase in the relative performance of the PSTD with an increase in size parameter, even for 

e.g., m = 1.2. 

Table 2 lists other numerical optical property errors with which to compare the 

performances of the two methods, but no separate accuracy criterion was prescribed for these 

quantities. The table includes the REs of the asymmetry factor g, the maximum REs of P11, 

the REs of P11 at 180° (i.e., backscatter), and the root mean square absolute errors (RMSAE) 

of P12/P11. Overall, the differences between the four errors given by the PSTD and DDA are 

relatively small and were dependent on x or m in the following manner: 

(1). When the prescribed accuracy was achieved, both methods gave the asymmetry 

factors with REs smaller than 2%. The DDA was more accurate for spheres with a 

refractive index of 1.2, whereas the PSTD was more reliable for the refractive 

indices of 1.8 and 2.0. 

(2). The maximum REs of P11 in the PSTD and DDA results were of the same order and 

either could reach over 100%. The maximum errors generally occurred at the 

scattering angles with a sharp trough or peak for P11, but neither method could track 

P11 accurately for all sizes and refractive indices over all scattering angles. 

(3). The PSTD gave more accurate backscatter for spheres with large m (> 1.6) and for 

those with small x and small m. Both methods worked poorly in some cases, i.e., the 

RE of P11(180°) was 80% for a sphere with m = 1.4 and x = 100 by the PSTD and 

130% for m = 1.4 and x = 40 by the DDA. 
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(4). The PSTD and DDA both approximated P12/P11 accurately with the RMSAEs smaller 

than 0.25. The values of RMSAE (P12/P11) are significantly correlated to those of the 

RMSREs of P11 in Table 1. 

Table 2. Same as Table 1 but for Some Accuracy Results 

m x 
RE of g (%) Maximum RE of P11 (%) 

RE of 

P11(180°) (%) 

RMSAE of 

P12 /P11(%) 

PSTD DDA PSTD DDA PSTD DDA PSTD DDA 

1.2 10 0.11 0.063 21 33 9.4 33 5.2 5.9 

20 0.18 0.036 28 84 15 18 6.9 11 

30 0.079 0.028 19 66 17 24 3.2 14 

40 1.7 0.11 3.5 × 102 87 12 34 25 15 

60 0.060 0.084 79 70 79 8.4 15 12 

80 0.88 0.71 1.3 × 102 1.2 × 102 44 54 16 17 

100 0.42 0.083 1.0 × 102 79 53 42 14 14 

1.4 10 1.5 0.83 29 65 28 60 1.9 5.9 

20 0.25 1.3 36 1.8 × 102 5.1 18 8.4 9.5 

30 0.14 0.38 84 1.4 × 102 48 30 17 23 

40 0.091 0.030 1.1 × 102 1.4 × 102 20 1.3 × 102 13 13 

60 1.3 N 1.6 × 102 N 28 N 16 N 

80 (1.9) N (2.9 × 102) N (10) N (36) N 

100 0.050 N 1.3 × 102 N 80 N 18 N 

1.6 10 1.3 0.55 51 23 16 8.5 7.4 6.9 

20 (6.0) (6.5) (1.5 × 102) (1.8 × 102) (78) (77) (44) (41) 

30 1.3 0.69 2.2 × 102 68 32 61 16 9.8 

40 1.2 (1.6) 1.2 × 102 (2.4 × 102) 22 (2.4 × 102) 17 24 

60 0.060 N (1.5 × 102) N (30) N (22) N 

1.8 10 0.78 1.2 32 21 1.6 21 12 5.5 

20 0.41 (1.5) 30 (1.1 × 102) 8.8 (26) 6.7 (15) 

30 0.17 (5.2) 49 (2.1 × 102) 6.2 (17) 13 (36) 

40 1.1 N 83 N 3.3 N 14 N 

60 0.15 N 1.2 × 102 N 2.6 N 19 N 

2.0 10 2.3 0.44 46 40 1.1 24 17 11 

20 0.56 (3.2) 51 (1.3 × 102) 4.4 (47) 7.7 (35) 

30 0.042 (1.6) 85 (2.4 × 102) 20 (43) 13 (49) 

40 (2.3) N (1.2 × 102) N (37) N (18) N 

A further comparison of the numerical accuracy of the two methods, the P11 of spheres 

with the same size parameter of 40 and different refractive indices, is illustrated in the left 

panels of Fig. 2. From the top to the lower panel, the refractive index is increased from 1.2 to 

2.0 in steps of 0.2. Shown in the figure are the exact solutions given by Mie theory (dashed 

lines) and the results of the PSTD (dark lines) and DDA (light lines) simulations. The relative 

errors of P11 are shown in the right panels of Fig. 2. The RMSREs of P11 for the spheres, as 

given by the PSTD and DDA, range from 15% (m = 1.4 for DDA) to 33% (m = 1.6 for DDA). 

For spheres with x = 40, the DDA simulation achieves the prescribed accuracy only for 

refractive indices of 1.2 and 1.4. When the refractive indices reach to 1.8 or 2.0, numerical 

convergence is not achieved for the DDA simulations at x = 40, hence no DDA results are 

shown. However, the PSTD results exceed the 25% criterion only for the sphere with m = 2.0, 

and the RMSRE of P11 is 26%. The relative errors of the PSTD and DDA are smaller than 

30% at most scattering angles, but became significant, even as large as 100%, near the angles 

where sharp troughs or peaks occurred in the phase function. In comparison, the REs of the 

phase functions given by the PSTD and DDA were of the same order for spheres with 

refractive indices of 1.2 and 1.4. At a refractive index of 1.6, the REs, simulated by the DDA, 

of the backward scattering at scattering angles larger than 140° became 50% or larger. The 

spheres with refractive indices of 1.8 and 2.0 could only be simulated by the PSTD. The REs 

are then comparable to those with small m and indicate the weak influence of m on the PSTD 

simulation accuracy. When particle size distributions or different orientations of non-spherical 

particles are taken into consideration in practical applications, the strong oscillations in the 
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phase function are smoothed. Thus, both methods will provide much more accurate and 

reliable phase matrix elements. The comparison shown in Fig. 2 indicate the results for 

forward scattering are apparently more accurate than those of backward scattering. 

 

Fig. 2. Comparison of the PSTD and DDA results with the exact (Lorenz-Mie) solutions for 

simulation of P11 (left panel) for spheres with x = 40 and a refractive index increase from 1.2 to 

2.0 from the top to lower panel. The right panels show the relative errors. 

For the same spheres with size parameters of 40 and refractive indices ranging from 1.2 to 

2.0, the left panels of Fig. 3 show the ratios of P12/P11 as functions of scattering angles and the 

right panel the absolute errors. The RMSAEs of the ratios given by both the PSTD and DDA 

are between 0.13 and 0.25 (from Table 2), and the absolute errors at most scattering angles are 

less than 0.2. Again, the results given by the PSTD and DDA for m = 1.2, 1.4, and 1.6 are 

comparable. For refractive indices up to 1.8 and 2.0, the PSTD simulations give results with 

similar accuracy to those with small m. 

#168049 - $15.00 USD Received 7 May 2012; revised 22 Jun 2012; accepted 1 Jul 2012; published 10 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16771



 

Fig. 3. Same as Fig. 2 but for P12/P11 (left panels) and the absolute errors (right panels). 

Similar to Table 1, Table 3 shows the comparison between the PSTD and DDA for 

spheroids, and the results compared with the exact solutions given by the T-matrix method 

[4,5]. With the refractive index of ice, both the PSTD and DDA fail only at a spheroid with x 

= 50 and a/b = 2. When the spheroids had the refractive index of mineral dust, the PSTD 

achieved the accuracy criteria for all sizes and aspect ratios except the one with x = 50 and a/b 

= 0.5. However, the DDA simulations could only be carried out for x smaller than 30 and 

achieved the criteria for sizes less than or equal to 20. As expected, the PSTD outperforms the 

DDA for large spheroids with x = 50 when m = 1.3117 + 1.489 × 10
−9

i, and was the preferable 

method for all spheroids with m = 1.55 + 0.001i, except the one with a/b = 2 and x = 10. The 

relative performance of the two methods shows no dependence on the spheroid aspect ratio. 

Generally, the refractive indices of ice at different wavelengths have a real part of 

approximately 1.3, and those of aerosol particles, i.e., dust and back carbon, are 1.5 or larger. 

Thus, our comparison suggests the DDA to be suitable for numerical simulations of ice 

crystals with size parameters smaller than 50, whereas the PSTD is more efficient and more 

accurate for ice crystals with size parameters larger than 50 and aerosol particles of all sizes. 

The PSTD and DDA results with respect to the REs of g, maximum REs of P11, REs of 

#168049 - $15.00 USD Received 7 May 2012; revised 22 Jun 2012; accepted 1 Jul 2012; published 10 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  16772



P11(180°), and RMSAEs of P12/P11 for spheroids are similar to those of spheres and will not 

be included here. 

Table 3. Same as Table 1 but for Spheroids with Size Parameters from 10 to 50, Aspect 

Ratios of 0.5 and 2.0, and Refractive Indices of 1.313 + 1.489 × 10−−−−9i and 1.55 + 0.001i. 

m a/b x 

Spatial 

resolution 
Time, s 

RE of Qext 

(%) 

RMSRE of 

P11 (%) 

PSTD DDA PSTD DDA PSTD DDA PSTD DDA 

1
.3

1
2

 +
 1

.4
8
9

 ×
 1

0
−

9
i 

0.5 10 15 18 6.0 × 101 4.0 × 100 0.51 0.58 6.9 4.4 

20 21 16 9.9 × 102 9.9 × 101 1.0 0.62 3.4 7.3 

30 19 15 2.8 × 103 9.1 × 102 0.95 0.16 8.1 16 

40 21 15 1.3 × 104 5.2 × 103 0.64 0.40 8.3 20 

50 15 15 8.4 × 103 1.3 × 104 0.54 0.89 23 20 

2 10 18 9.5 7.2 × 101 1.0 × 100 0.29 0.65 8.1 20 

20 10 7.2 8.3 × 101 1.0 × 101 0.86 0.43 9.9 25 

30 16 8.1 1.4 × 103 2.1 × 102 0.83 0.67 8.7 22 

40 15 12 2.9 × 103 2.9 × 103 0.57 0.052 22 21 

50 (19) (15) (1.3 × 104) (3.5 × 104) (1.3) (1.7) (27) (88) 

1
.5

5
0

 +
 0

.0
0
1
i 

0.5 10 15 51 6.7 × 101 3.3 × 102 0.28 0.89 5.3 2.4 

20 27 (60) 2.6 × 103 4.1 × 104 0.95 (5.2) 11 (3.5) 

30 21 (35) 4.6 × 103 (1.8 × 105) 0.87 (2.5) 7.6 (10) 

40 14 N 3.1 × 103 N 0.10 N 19 N 

50 (18) N (3.5 × 104) N (3.1) N (10) N 

2 10 20 30 1.3 × 102 6.6 × 101 0.73 0.42 0.39 8.7 

20 15 20 6.8 × 102 9.5 × 102 0.27 0.75 13 19 

30 18 (35) 8.1 × 103 (1.1 × 105) 0.89 (1.6) 24 (31) 

40 21 N 8.9 × 103 N 0.19 N 21 N 

50 17 N 2.0 × 104 N 0.77 N 12 N 

The left panels of Fig. 4 show P11 of the spheroids with x = 30 and the right panels the 

relative errors of the PSTD and DDA results compared with the T-matrix solutions. The 

aspect ratios and refractive indices are labeled in the figure. In general, the PSTD and DDA 

results both had excellent agreement with the T-matrix results, although the relative errors 

became significant at a few scattering angles around the troughs or peaks in P11. For the 

spheroid with x = 1.55 + 0.001i and a/b = 2.0, the DDA gave the RMSREs of P11 to be 31%, 

which is larger than the criterion, but Fig. 4 shows the relative errors to be larger than 50% 

only at the scattering angles around 80° and the ones larger than 130°. 
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Fig. 4. Same as Fig. 2 but for spheroids with x = 30, aspect ratios of 0.5 and 2.0, and refractive 

indices of 1.312 + 1.489 × 10−9i and 1.55 + 0.001i. 

The ratios of P12/P11 for the spheroids with the same size parameters and the absolute 

errors are illustrated in Fig. 5. The absolute errors of P12/P11 are no more than 0.2 at most 

scattering angles. For the spheroid with a/b = 2.0 and m = 1.55 + 0.001i simulated by the 

DDA (lower panels), the errors became larger than 0.5 at the scattering angles that had 

relative errors of P11 larger than 50%. From Figs. 4 and 5, we notice that, for spheroids, the 

PSTD results of P11 and P12/P11 are slightly more accurate than those of the DDA. 
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Fig. 5. Same as Fig. 4 but for P12/P11 (left panels) and the absolute errors (right panels). 

Before drawing our final conclusions, we reflect once more on the parameters of the DDA 

simulations. As noted before, the paper is based on an older version of the ADDA and 

(almost) default settings, but we performed a limited set of simulations (for two spheres) with 

the current development version of ADDA (1.1b6 as of May 1, 2012), trying different DDA 

formulations and iterative solvers to maximize performance. 

For the sphere with x = 10 and m = 2.0 the best result was obtained with the filtered 

coupled dipoles (FCD) formulation of the DDA [30,31]. The version decreased the number of 

iterations by 25% and largely improved the accuracy such that a spatial resolution of 20 was 

sufficient for a prescribed accuracy threshold. The resulting computational time was 140 s – 

14 times faster than the DDA with the default settings, but still 3 times slower than the PSTD. 

For the sphere with x = 80 and m = 1.2, the FCD formulation halves the number of iterations 

but has little effect on the accuracy. The best performance, however, was achieved by using a 

CSYM iterative solver [32], which resulted in an almost four times smaller number of 

iterations, and a computational time of 2.0 × 10
4
 s, only two times larger than that of PSTD. 

4. Conclusions 

A systematic comparison between the PSTD and DDA for ice crystal and atmospheric aerosol 

light scattering computations was made by using the parallelized implementations of the two 
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methods on the same multi-processor hardware, although we have no reason to believe that 

the relative performance is significantly affected by the hardware used. For spheres, size 

parameters up to 100 and refractive indices up to 2.0 were used, and for spheroids, two aspect 

ratios and two realistic refractive indices of ice and dust were used with equivalent-volume 

size parameters up to 50. The same prescribed accuracy criteria were required for the 

extinction efficiency and the phase function, and the computational time was used as the key 

parameter to evaluate and compare the two methods. The DDA was more economical for 

numerical simulations of spheres with small refractive indices and small size parameters; 

whereas, the PSTD was more economical for large x and m. The critical size parameter, above 

which the PSTD outperformed the DDA, decreased from 80 to 30 as the refractive index 

increased from 1.2 to 1.4. The PSTD was more CPU-efficient and applicable to a wider range 

of x when the refractive index was larger than 1.4. Similar conclusions were obtained for the 

spheroids. Furthermore, the overall accuracy of the asymmetry factor, backscatter, and linear 

polarization given by the PSTD and DDA were in agreement. 

The implementation of each of the two compared methods has been substantially 

enhanced through our efforts. For instance, we found that the latest formulations of the DDA 

can decrease the required computational time by an order of magnitude. However, this is 

expected only to shift the boundary between the methods in the (x, m) plane but not to 

principally affect the conclusion of this comparison. Moreover, potential users are advised to 

test (and fine-tune) these and other light-scattering methods for their particular applications 

before performing large-scale simulations. Finally, we note that the comparison was 

performed only for real refractive indices or those with negligible imaginary parts. Significant 

absorption is known to largely improve the convergence of the iterative solver in the DDA 

[33]. Therefore, a comparison between the PSTD and DDA for absorbing, including metallic, 

refractive indices is an interesting topic for future research. 
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