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Abstract: The fulfillment of the reciprocity by five publicly available
scattering programs is investigated for a number of different particles.
Reciprocity means that the source and the observation point of a given
scattering configuration can be interchanged without changing the result.
The programs under consideration are either implementations of T-matrix
methods or of the discrete dipole approximation. Similarities and differ-
ences concerning their reciprocity behavior are discussed. In particular, it
is investigated whether and under which conditions reciprocity tests can be
used to evaluate the scattering results obtained by the different programs for
the given particles.
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1. Introduction

Elastic scattering of electromagnetic waves on single particles represents a basic physical pro-
cess of great practical importance in such diverse fields as atmospheric and ocean optics, astro-
physics, biomedical optics, material sciences, and nano-optics. In the past, a variety of different
methods has been developed to deal with the scattering problem of, in particular, nonspherical
objects (for an overview see, e.g., [1–11]). In general, they differ in the approaches used, and,
consequently, in their capabilities to compute the scattering behavior of various particle classes.
Corresponding computer programs are sophisticated, tested, and partly publicly available (see,
e.g., [12–14] for a database of numerous programs hosted by the University of Bremen). How-
ever, they may lead to slightly different numerical results for a given scattering problem. This
can also be the case for various implementations of the same method or even for different ver-
sions of the same program. The differences may increase when approaching the limits of the
algorithms. On the other hand there are cases where only one single method exists for treating
special scatterer types so that no comparative calculations with alternative methods are possi-
ble for validating the results obtained. In all these cases it is up to the user to finally judge the
accuracy and correctness of the findings. This is, e.g., important in remote sensing applications.
Different scattering models can lead to different results in the data processing and finally to
different conclusions.

To gain confidence in the results, scattering calculations at the parameter sets of benchmarks
can be conducted and compared with each other. Comparisons with the outcome of other re-
liable programs for scatterers of simple shape and composition is also possible. Both can give
some clues how to assess the results of the particles under consideration. Moreover, the tests
of the phase and scattering matrices, proposed by Hovenier and van der Mee [15], can be per-
formed. Some necessary conditions, such as that the single scattering albedo has to be equal
to or less than 1, can be also checked. Additionally, tests of the energy conservation or the
fulfillment of the boundary condition at the particle surface can be taken into account. But suc-
cessful program runs including passing through some checks can not guarantee the correctness
of the results. For instance, the fulfillment of the boundary condition at the scatterer surface
and relative convergence of the corresponding differential scattering cross sections (DSCS) in
the far field can be two different things. This has been recently illustrated by Rother and Wauer
[16]. They conducted a case study on the accuracy behavior of three different T-matrix meth-
ods for scalar scattering problems. They found that the fulfillment of the boundary condition
by a special T-matrix method within a given accuracy does not necessarily mean that relative
convergence of the corresponding DSCS is obtained with the same accuracy. They provided
numerical examples in which the convergence was worse. On the other hand, they also showed
the contrary behavior for another T-matrix scheme. So the check of the boundary condition
seems not to be an appropriate criterion to evaluate far field scattering results.

Additionally, Rother and Wauer [16] investigated the fulfillment of the reciprocity by DSCS.
Reciprocity means that the source and the observation point of a given scattering configuration
can be interchanged without changing the result (e.g., [17]). It is a consequence of the symme-
try of the Green’s function underlying the T-matrix approach (see [10], for example). It always
has to be fulfilled by any scattering program within a given numerical accuracy. A reciprocity
check requires no detailed knowledge of the numerical method and its implementation. It can
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be readily done provided that differential scattering quantities are delivered. It is a simple and
quick test for both users and program developers of scattering software. One of the conclusions
in [16] is that the fulfillment of the reciprocity represents a highly sensitive criterion that can
be successfully applied to obtain physically reliable results (see also [1, 2], e.g.). In particu-
lar, it could be shown in [16] that the reciprocity is as sensitive as the Barber–Hill criterion
[18, 19] for the relative convergence of DSCS. That is, there is a relation between the quality
of the scattering behavior in the far field and the fulfillment of the reciprocity. In preliminary
investigations, we could also observe this for spheroids by means of the program mieschka
[19] as a special T-matrix method implementation. A similar relation has been seen for two
touching spheres by using the programs scsmfo1b [20] and mstm [21]. In a recent study [22]
of light scattering by fractal aggregates of highly absorbing material computations were per-
formed with the discrete dipole approximation (DDA) and the superposition T-matrix method,
using the DDSCAT and scsmfo1b implementations, respectively. The DDSCAT computations
were performed in conjunction with the GKDLDR polarizability model (see Section 3.2.2 for
details). It was found that the accuracy of the DDSCAT results estimated by the use of the reci-
procity condition correlates well with the accuracy estimates based on comparison with the
T-matrix results.

To study its practical use, we investigated the fulfillment of the reciprocity condition by exist-
ing publicly available scattering programs, considering different particles of relatively simple
shapes. In doing so, we focussed on two classes of programs: implementations of T-matrix
methods and of the DDA. The results of this study are presented here. In Section 2 the reci-
procity conditions, scatterer geometries, and configurations are described. The different pro-
grams considered are outlined in Section 3. In Section 4 the numerical results are presented and
discussed. Some conclusions are given in Section 5.

2. Description of the problem

Consider Fig. 1 for illustration. A plane, linearly polarized incident field

Einc = e0 exp(ik0z) (1)

propagates along the positive z-axis of a Cartesian coordinate system (x,y,z) and impinges on
a particle of, in general, arbitrary size, shape, and composition. Here, k0 = 2π/λ denotes the
wave number of the outer free space at a wavelength of λ . The unit vector e0 characterizes the
polarization state of the incident field. Let the x-z-plane be the scattering plane in which the
differential scattering quantities are measured. Then, e0 = ey defines a vertically (v) polarized
incident field Ev

inc. For a horizontally (h) polarized field Eh
inc, we have e0 = ex (see, e.g., [18]).

ex and ey are unit vectors in the x- and y-direction, respectively. Note that time harmonic fields
are considered throughout and that their time dependence is always omitted.

The presence of the particle gives rise to a scattered field Esca. It is also decomposed into
a v- and h-polarized component with respect to the scattering plane. We define Ev

sca = Ev
scaeφ

and Eh
sca = Eh

scaeθ , where eφ and eθ are unit vectors in the φ - and θ -direction, respectively (see
again [18]).

The relation between the polarized scattered field components (Ev
sca, Eh

sca) in the far field
approximation and the polarized incident field components (Ev

inc, Eh
inc) is governed by the scat-

tering amplitude matrix F (e.g., [17, 23]).
(

Ev
sca

Eh
sca

)
=

exp(ik0r)
r

(
Fvv (θ ,φ) Fvh (θ ,φ)
Fhv (θ ,φ) Fhh (θ ,φ)

)
·
(

Ev
inc

Eh
inc

)
(2)

Based on the scattering amplitudes Fαβ , (α,β ) = (v,h), all scattering quantities of interest
can be computed. In the present study, polarized DSCS (e.g., [18, 23])
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dσαβ

dΩ
(θ ,φ) = k2

0

∣∣Fαβ (θ ,φ)
∣∣2 (3)

have been considered. Note that they are dimensionless due to the additional factor k2
0. The dif-

ferent methods for their computation, which have been taken into account in the investigations,
are outlined in Section 3.

In Eqs. (2) and (3), φ = 0o or φ = 180o due to the restriction to the scattering plane, while the
scattering angle θ runs from 0o to 180o for each φ . In the further investigations, the following
convention is used (see, e.g., [18]). If φ = 0o then θ ∈ [0o,180o]. If φ = 180o then θ = (360o−
−θ ′)∈ [180o,360o] with the angle θ ′ ∈ [0o,180o] is chosen. In this way, above relations become
independent of φ while θ runs from 0o to 360o.

Now, consider the scattered field of a given particle at an arbitrary but fixed angle θ in
the scattering plane. In the reciprocal case, the incident field impinges on the particle under
this angle θ , and the scattered field is observed in negative z-direction. At the same time, the
polarization states of the fields interchange. The reciprocity condition states that the DSCS
have to be equal in both cases. In order to be more general, let (ninc, nsca) be the incident and
scattered field propagation directions and (α,β ) the polarizations with respect to a reference
plane spanned by (ninc, nsca). The reciprocal case is obtained by considering the incident field in
the direction −nsca and the scattered field in the direction −ninc. Then the reciprocity condition
for the polarized DSCS is given by (compare, e.g., with [23, 1, 2])

dσαβ

dΩ
(ninc,nsca) =

dσβα

dΩ
(−nsca,−ninc) . (4)

In most scattering programs, however, the particle is rotated rather than the field. Reciprocal
configurations are often realized by rotating the scatterer against the fixed incident field and
observing the scattered field at an appropriately rotated angle. This is common in T-matrix
methods, for instance. In these methods, a body system (xb,yb,zb) is usually introduced which
is fixed to the particle and in which its T-matrix is determined. The rotation of the body system
with respect to the (laboratory) system (x,y,z) is described by the Eulerian angles (φp, θp, ψp)
(e.g., [23, 18]). φp and ψp represent rotations about different z-axes while θp is a rotation about
an y-axis. One of the advantages of doing so consists in the possibility to utilize symmetries of
the particle, if present, within an appropriately chosen body system [24]. The main advantage in
the context of reciprocity is, however, the ability to readily compute the scattering behavior of
a particle for any fixed orientation by simple rotations of its T-matrix, once the latter is known
in the body system (see, e.g., [23, 1, 2]).

In the present study, the following special reciprocal configurations have been considered.
φp = 0o and ψp = 180o have been chosen throughout. In this way we always remain in the scat-
tering plane. The initial particle orientation is characterized by θp = 0o. In this orientation, the
scattered field is mostly observed at an angle θ = 90o. The associated reciprocal configuration
is given by (θp = 90o, θ = 270o) (see Fig. 1). In some special cases, the configurations (θp = 0o,
θ = 60o) and (θp = 120o, θ = 300o) have been also taken into account. Furthermore, only vv-
and hh-polarized DSCS have been investigated. Thus the reciprocity condition (4) reduces to

dσαα
dΩ

(
θp = 0o,θ = θ1

)
=

dσαα
dΩ

(
θp = 180o −θ1,θ = 360o −θ1

)
(5)

for θ1 ≤ 180o, and

dσαα
dΩ

(
θp = 0o,θ = θ1

)
=

dσαα
dΩ

(
θp = θ1 −180o,θ = θ1

)
(6)

for θ1 ≥ 180o, α = (v,h), omitting the (φp,ψp)-dependence. The relative reciprocity error
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eαα(c1,c2) =
|dσαα(c1)/dΩ−dσαα(c2)/dΩ|

dσαα(c1)/dΩ
100% (7)

with c1 = (θp,1,θ1) and c2 = (θp,2,θ2) represents a measure for its fulfillment.

Table 1. Scatterer geometries considered in the investigations.

Abbreviation Scatterer k0rv m
sphd p 1 prolate spheroid 3 (1.6,0.0005)
sphd p 2 a/b = 1.5 15 (1.6,0.0005)
sphd p 3 3 (1.313,5.889×10−10)
sphd p 4 15 (1.313,5.889×10−10)
sphd o 1 oblate spheroid 3 (1.6,0.0005)
sphd o 2 a/b = 0.67 15 (1.6,0.0005)
sphd o 3 3 (1.313,5.889×10−10)
sphd o 4 15 (1.313,5.889×10−10)
cyl 1 circular cylinder 3 (1.6,0.0005)
cyl 2 h/2r = 1.5 15 (1.6,0.0005)
cyl 3 3 (1.313,5.889×10−10)
cyl 4 15 (1.313,5.889×10−10)
bi sph 1 touching bisphere 3 (1.6,0.0005)
bi sph 2 15 (1.6,0.0005)
bi sph 3 3 (1.313,5.889×10−10)
bi sph 4 15 (1.313,5.889×10−10)
cheb 5 1 Chebyshev particle 3 (1.6,0.0005)
cheb 5 2 ε = 0.05 15 (1.6,0.0005)
cheb 5 3 n = 5 3 (1.313,5.889×10−10)
cheb 5 4 15 (1.313,5.889×10−10)
cheb 45 1 Chebyshev particle 3 (1.6,0.0005)
cheb 45 2 ε = 0.05 15 (1.6,0.0005)
cheb 45 3 n = 45 3 (1.313,5.889×10−10)
cheb 45 4 15 (1.313,5.889×10−10)
cube 1 cube 3 (1.6,0.0005)
cube 2 15 (1.6,0.0005)
cube 3 3 (1.313,5.889×10−10)
cube 4 15 (1.313,5.889×10−10)

Now, let us have a look at the scatterer geometries and parameters used in the study. They are
summarized in Table 1. Here, rv, k0rv and m are the radius of the volume equivalent sphere, the
volume equivalent size parameter, and the complex refractive index, respectively. a/b denotes
the aspect ratio of the spheroids with the semi-axes a and b. The aspect ratio of the circular
cylinders with a height h and a cross-sectional radius r is h/2r. Furthermore, n and ε are the
order and the deformation parameter, respectively, of the Chebyshev particles, the shape of
which is given by

R(γ) = r0 (1+ ε cos(nγ)) , γ ∈ [0o,180o] . (8)

To compute the radius r0 of the underlying sphere from the volume equivalent one, the cor-
responding expression in [25] has been used. Note that the size parameters have been chosen
so that DDA are able to treat them on a desktop PC. The refractive index of (1.6,0.0005) is that
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one of a ”mean” mineral aerosol (see, e.g., [26]), while (1.3130,5.889×10−10) is the refractive
index of ice at a wavelength of 500nm [27]. It is obvious that the combination of k0rv = 15 and
m = (1.6,0.0005) represents the crucial one for the scattering programs in the present study.
It characterizes the largest particles, considered, with the highest optical contrast to the back-
ground. The deformation parameter ε = 0.05 and orders n = (5,45) have been taken from [28].
Note furthermore that touching bisphere means a two-sphere cluster (bisphere) with touching
components.
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Fig. 1. Configurations of the bisphere with touching components ((a) and (b)) and of the
cube ((c) and (d)) where the incident field Einc propagates along the positive z-axis. The
y-axis points to the reader. (a) The rotational axis is oriented along the positive z-axis (θp =
0o). The scattered field Esca is observed in positive x-direction (θ = 90o). (b) The rotational
axis is oriented along the positive x-axis (θp = 90o). The scattered field Esca is observed
in negative x-direction (θ = 270o). (c) The central axis, which stands perpendicularly on
the top and bottom faces of the cube while going through its center, is oriented along
the positive z-axis (θp = 0o). The scattered field Esca is observed in positive x-direction
(θ = 90o) out of a cube edge. (d) The central axis is oriented along the positive x-axis
(θp = 90o). The scattered field Esca is observed in negative x-direction (θ = 270o).

The configurations for the spheroids, circular cylinders, and Chebyshev particles are equal
to those of the bisphere shown in Figs. 1(a) and 1(b). That is, a plane wave incidence along the
rotational axis of these particles is assumed in the initial orientation characterized by θp = 0o.
Then, only rotations by θp within the scattering plane are considered to generate the reciprocal
configurations. The special case of the cube is illustrated in Figs. 1(c) and 1(d).

3. Methods of solution

In this section, the programs considered in the study are outlined. Short descriptions of the
underlying methods, the scatterer geometries which can be treated, the convergence strategies,
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and the most important parameters which influence the accuracy of the results are provided.
We focus on practical aspects of using these programs to make our conclusions immediately
relevant for their users.

3.1. T-matrix codes

3.1.1. Program mieschka

Program mieschka computes integral and differential scattering quantities for rotationally
symmetric, homogeneous and isotropic particles in fixed and random orientations with respect
to a plane, linearly polarized incident field. It can be applied to particles the size of which is
comparable to or smaller than the wavelength of the incoming radiation. A detailed description
of mieschka is provided in [19, 10]. Its reliability has been proven in many comparisons
with benchmarks and results of other programs as well as in numerous different applications.
It is accessible via the German Aerospace Center’s Virtual Laboratory (VL; [19]) for registered
users. Additionally, it is delivered in the book by Rother [10]. mieschka version 1.0.1 of VL
has been used in the present investigations.

Program mieschka is an implementation of a T-matrix method and written in FORTRAN
95. Formulated in spherical coordinates, it involves expansions of the incident, scattered and
internal fields (Einc,Esca,Eint) in term of vector spherical wave functions ΨΨΨτnl and RgΨΨΨτnl ,
respectively.

Esca(k0r) =
2

∑
τ=1

∞

∑
n=1

n

∑
l=−n

fτnl ΨΨΨτnl(k0r) (9)

Eint(ksr) =
2

∑
τ=1

∞

∑
n=1

n

∑
l=−n

pτnl RgΨΨΨτnl(ksr) (10)

Einc(k0r) =
2

∑
τ=1

∞

∑
n=1

n

∑
l=−n

aτnl RgΨΨΨτnl(k0r) (11)

Here, ks denotes the wave number inside the scatterer. To compute the unknown scattered
and internal field expansion coefficients ( fτnl , pτnl), the continuity conditions of the tangential
field components across the particle surface are applied [29]. Inserting the field expansions (9),
(10), and (11) into the continuity conditions and applying a projection scheme to the resulting
equations with certain weighting functions lead to the T-matrix equation

f = T ·a . (12)

It relates the vector f of the scattered field expansion coefficients to that of the known incident
field expansion coefficients a. The elements of the T-matrix represent integrals of combinations
of vector spherical wave functions and weighting functions over the particle surface. Note that
Waterman’s weighting functions [30] have been used in all investigations. If necessary, the
internal field expansion coefficients can be calculated in a similar way. Once the scattered field
is known, the scattering quantities of interest are calculated.

In any practical computation, the series expansions in (9), (10), and (11) have to be truncated
at a finite ncut, leading to a finite sized T-matrix. Moreover, the sum over l can also be truncated
at a certain lcut ≤ ncut, depending on the particle shape. The parameters (ncut, lcut) are automat-
ically determined in the standard mode of mieschka, which was used in the computations.
The procedure is similar to that by Barber and Hill [18] and has been described in detail in
[19, 10]. It is however important to note that (ncut, lcut) are fixed in such a way that the hh- and
vv-polarized DSCS are convergent within a relative error of 5% at 80% of the scattering angles.
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In doing so, ncut is increased in steps of three, beginning from a defined starting value, while
lcut is increased in steps of one. The accuracy in computing the surface integrals of the T-matrix
elements is also automatically controlled. Due to the rotational symmetry of the scatterers, only
θ -integrals remain. They are numerically solved by a Gauss-Kronrod quadrature with an au-
tomatic step-size determination. The latter is realized in such a way that a relative integration
error of 0.1% is achieved, resulting in a special number of integration points nint.

3.1.2. Programs scsmfo1b and mstm

Mackowski, Fuller, and Mishchenko [20] have developed codes for the calculation of the scatte-
ring matrix and cross sections of neighboring, non–intersecting spheres. These codes, written in
FORTRAN 77, are available via ftp since the late 1990s. In particular, the program scsmfo1b
is designed to calculate the entire 2-D scattering matrix and cross sections for large-scale sphere
clusters in fixed orientations of the cluster with respect to a plane, linearly-polarized incident
field. It is based on the work in [31, 32] and represents a superposition extension of the Mie
theory to multiple spheres.

In scsmfo1b, each of the individual spheres is described by an expansion in terms of out-
going vector spherical wave functions analogous to Eq. (9), centered about the origin of the
sphere. The application of the continuity conditions at the surface of each sphere results in a
system of interaction equations for the scattered field expansion coefficients. These equations
are solved iteratively for a given cluster configuration. The scattered field of the entire cluster
is described by a single vector spherical harmonic expansion (9), centered about the cluster
origin, by translating the individual sphere expansions to the common cluster origin. Based on
this field, above mentioned scattering quantities are computed. Consequently, the iteration strat-
egy to obtain the solution and its numerical accuracy are governed by the parameters (itermax,
eps, meth, qeps1, qeps2) which are fixed in the input file scsmfo.inp. Here, itermax denotes
the maximum number of iterations in the solution method, eps the relative residual error tol-
erance of the solution, meth the solution method, qeps1 the error tolerance for determining
the single-sphere harmonic order truncation, and qeps2 the error tolerance for determining the
cluster expansion truncation limit. Note that the original parameter values, provided by the pro-
gram authors, have not been changed in our computations for the bispheres. That is, they were
(itermax, eps, meth, qeps1, qeps2) = (400, 1×10−6, 0, 1×10−5, 1×10−8), throughout. Note
furthermore that above theoretical description can be converted into a T-matrix formulation.

Recently, a revised and modernized version of above codes, called mstm, has been released
[21]. It is written in FORTRAN 90 and combines above codes for fixed and random orientation
into a single package. It is able to treat systems of several thousand spheres. The source code
and supporting documentation are available for free download at [33]. Note that the program
version 2.1, released on 30 March 2011, has been used in the present investigations.

Several changes have been made during the revision. In particular, target T-matrices for
each sphere and a cluster T-matrix, which treats the ensemble of spheres as a single parti-
cle, are derived. One of the main steps in a program run is the iterative solution of the sys-
tem of interaction equations for the sphere-target T-matrices. So, the key parameters influ-
encing the convergence behavior of the program mstm are (mie epsilon, translation epsilon,
solution epsilon, max number iterations). Here, mie epsilon characterizes the convergence
criterion for determining the number of orders in the Mie expansions for each sphere,
translation epsilon the convergence criterion for estimating the maximum order of the clus-
ter T-matrix, solution epsilon the error criterion for the solution of the interaction equations,
and max number iterations the maximum number of iterations used in the biconjugate gradi-
ent scheme for a particular right hand side. The following parameter values have been cho-
sen when conducted the computations for the bispheres: (mie epsilon, translation epsilon,
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solution epsilon, max number iterations) = (1× 10−4, 1× 10−3, 1× 10−10, 2000). Note that
they are given in the mstm 2.1 manual.

3.2. DDA codes

The DDA is based on replacing a scatterer by a set of small volume elements (dipoles) which are
characterized by their polarizabilities α . In case of an isotropic material, the latter – generally
a tensor – is expressed as

ᾱαα =Vdχ
{

Ī+
[
(4π/3) Ī−M̄

]
χ
}−1

= αCM (
Ī−M̄αCM/Vd

)−1
, (13)

where Vd is the volume of the dipole, χ = (ε−1)/4π and ε are the susceptibility and the electric
permittivity of the medium at the dipole center, and Ī is the identity tensor. αCM denotes the
Clausius-Mossotti (CM) polarizability which is equivalent to assume M̄ = 0.

αCM =Vd
3

4π
ε −1
ε +2

(14)

The term M̄ is associated with the finiteness of the dipole which can be derived from different
approximate assumptions. The most commonly used polarizability formulation is the lattice
dispersion relation [34] (LDR; sometimes also abbreviated as LATTDR)

M̄LDR = Ī
[(

bLDR
1 +bLDR

2 m2 +bLDR
3 m2S

)
(k0d)2 +(2/3)i(k0d)3] , (15)

bLDR
1 ≈ 1.8915316 , bLDR

2 ≈−0.1648469 , bLDR
3 ≈ 1.7700004 , S = ∑

μ

(
aμe0

μ
)2

, (16)

where m is the refractive index at the dipole center, d the dipole size (edge length of a cubical
dipole), and S a factor depending on the geometry of the (linearly polarized) incident wave.
The latter is characterized by two unit vectors: the propagation direction a and the polarization
direction e0 of the incident electric field. The summation in the expression for S is performed
over three vector components. Later a minor flaw in the LDR derivation was found and cor-
rected [35]. This corrected LDR (CLDR; also referred to as Gutkowicz-Krusin and Draine LDR
(GKDLDR)) is independent on the incident polarization but leads to a diagonal polarizability
tensor instead of scalar

MCLDR
μν = δμν

[(
bLDR

1 +bLDR
2 m2 +bLDR

3 m2a2
μ
)
(k0d)2 +(2/3)i(k0d)3] (17)

where δμν is the Kronecker symbol.
There exist a number of other polarizability formulations [36, 37], but the LDR and the

CLDR are unique in their dependence on the incident direction. As an example of alternative
formulation, we consider the radiative reaction correction (RRC, [38])

M̄RRC = Ī(2/3)i(k0d)3 . (18)

The core part of DDA consists in the solution of a system of linear equations. One of the
equivalent forms of the latter is [36]

α−1
i Pi −∑

j �=i

Ḡi jP j = Einc
i , (19)

where Pi are the unknown dipole polarizations, Einc
i is the incident electric field at the dipole

center, Ḡi j is the interaction term, and the indices i and j enumerate the dipoles. For the inter-
action term, the Greens tensor for point dipoles is used:
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Ḡi j = Ḡ(ri,r j) =
exp(ik0R)

R

[
k2

0

(
Ī− R̂R̂

R2

)
− 1− ik0R

R2

(
Ī−3

R̂R̂
R2

)]
, (20)

where ri is the radius-vector of the dipole center, R = r j − ri, R = |R|, and R̂R̂ = RμRν . Al-
though finite-size corrections for Ḡi j are possible [36], we do not discuss them here. We want
to refer to, e.g, [37] for further details.

3.2.1. Program ADDA

ADDA is an open-source implementation of the DDA which is capable of running on a cluster of
computers parallelizing a single DDA computation [36]. The solution of Eq. (19) is performed
by an iterative method [36] until the relative residual (norm of the difference between the left-
and right-hand-sides of Eq. (19) divided by the norm of Einc

i ) is less than the specified threshold
εit. The typical value for the latter is 10−5 which is much smaller than the typical total error of
an ADDA simulation, measured by the errors in scattering quantities. Hence, a particular value
of εit is not relevant in many cases, but there is an important exception. While the finite size
of dipoles is accounted for by a polarizability formulation, Eq. (19) is a direct implication of
the Maxwell equations for a set of point dipoles with specified polarizabilities. Hence, an exact
solution of Eq. (19) exactly satisfies the Maxwell equations (and all its implications), albeit not
for the original scatterer but for a set of point dipoles. In this respect, finite residual (and hence
the value of εit) is the only cause of inaccuracy for any tests based on satisfaction of Maxwell
equations.

A standard DDA simulation is performed for a single value of d. Then the accuracy of the
result obtained is largely unknown. There exist a number of benchmark studies, reviewed in
[37], but their applicability for a specific application is often arguable. Therefore, the only
feasible approach to estimate the DDA accuracy, when no reference result is available, is to
perform DDA simulations with different d. The accuracy can then be estimated from a variation
of the results with decreasing d. For example, simple differences between successive values of
d can be used, similar to the convergence criterion of the T-matrix method (see Section 3.1.1). A
more rigorous approach is based on the extrapolation of the result to zero value of d. A specific
procedure is described in detail in [39]. Although it is, to a large extent, an empirical technique,
its consistency (in particular, reliability of the error estimate) was studied on a number of cases
in the original paper [39], and it was successfully applied in [40–42]. In the current contribution,
we use the extrapolation technique for a few specific cases to obtain accurate ADDA results
together with estimate of its error (uncertainty).
ADDA 1.0 was used for almost all simulations. However, the ability to handle Cheby-

shev particles was implemented specially for this manuscript. Hence, ADDA 1.1b1 was taken
for these shapes. All internal parameters of ADDA were set to default values, unless noted
otherwise. In particular, LDR polarizability was chosen, εit = 10−5, and dipole size d =
max(λ/(10|m|),Dx/16), where Dx is the size of the particle along the xb-axis in the body
system. ADDA uses double precision for all calculations.

3.2.2. Program DDSCAT

DDSCAT is a publicly available, open-source DDA code written in FORTRAN 90 for com-
puting electromagnetic scattering and absorption by objects with arbitrary geometries and, in
general, inhomogeneous and anisotropic dielectric properties. The objects can be finite parti-
cles or 1D or 2D periodic structures. Details about DDSCAT can be found in [43] and at [44]
or [45]. The user guide is provided in [46]. Note that DDSCAT version 7.1 has been used in our
study.
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The accuracy of DDSCAT computations for finite targets is mainly controlled by the dipole
spacing d and the error tolerance TOL. Depending on the chosen target geometry, the user spec-
ifies the size of the target and the number of dipoles along different target axes. For example,
for a rectangular prism with side lengths a, b, and c, the user specifies a/d, b/d, and c/d, as
well as the volume-equivalent radius aeff, so that 4πa3

eff/3 = abc. For computing differential
scattering properties, it is recommended to choose d such that |m|k0d < 0.5, where m denotes
here the maximum of the (in general varying) refractive index of the target. The error tolerance
determines the termination of the conjugate gradient iteration. The iteration scheme continues
until the linear equation system is solved with a fractional error TOL. Most sample input files
in DDSCAT version 7.1 use TOL = 10−5, which is also the setting we used in our calculations.
All calculations are performed in single precision. The output files give differential scattering
properties up to the third digit after the decimal point, which is the overall accuracy with which
we present DDSCAT results in this paper.

There are presently 24 classes of geometries for finite targets and 11 classes of periodic
targets implemented, for which the code automatically generates an array of dipoles with user-
specified target dimensions and dipole spacing. In addition, the code can read in user-generated
input files of dipole arrays, as well as files with spectral dielectric properties for different ma-
terials, thus extending the applicability of the code to practically arbitrary shapes and arbitrary
inhomogeneous and anisotropic compositions.

In the input parameter file, the user must specify the prescription of the dipole polarizabilities.
The two available options are LATTDR and GKDLDR (see Section 3.2 for details). The user
manual [46] recommends the use of GKDLDR; but it is noted that LATTDR in many cases
gives results of similar quality. In all DDSCAT calculations presented in this paper, we used
GKDLDR (CLDR).

4. Computational results and discussion

4.1. T-matrix results

4.1.1. Program mieschka

Table 2 shows the reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal config-
urations (θp = 0o,θ = 90o) and (θp = 90o,θ = 270o) of different particles. In most cases, the
errors are less than 5%, which is below the required accuracy for determining DSCS within
mieschka (see Section 3.1.1). The only exception is evv for cyl 2 of 15%. Fig. 2 shows the
corresponding differential scattering behavior of this particle. It is seen that the DSCS values
at θ = 90o for θp = 0o (solid line) and at θ = 270o for θp = 90o (dashed line) are located near
deep down spikes. Relative convergence of DSCS is, however, not tried to be achieved in such
regions according to the convergence strategy of mieschka. So the poor fulfillment of the
reciprocity condition (5) is not surprising in this particular case. But decreasing the relative
error within the Barber–Hill criterion of 5% to 1% while keeping the integration error fixed has
also an indirect effect on this. We have ehh = 4.3% and evv = 15% with the accuracy of 5%. In
the case of 1% accuracy, ehh = 0.4% and evv = 1.8% are obtained. Note that a refinement of the
numerical surface integration does not significantly influence these results. To circumvent such
situations as for cyl 2, more appropriate reciprocal configurations should be taken into account.

It is furthermore seen that the reciprocity is, in general, better fulfilled for the spheroids and
Chebychev particles than for the circular cylinders by mieschka. The reciprocity error ranges
between 3.2× 10−4 % and 3.1% for the former particles whereas it is within 1.2× 10−1 % –
4.3% for the cylinders (except evv for cyl 2, of course). The latter error range is, however, still
below the required accuracy of 5%. The main difference between the former and the latter
particles consists in the fact that finite circular cylinders exhibit 90o-edges, while spheroids
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Table 2. Reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal configura-
tions (θp = 0o,θ = 90o) and (θp = 90o,θ = 270o) using mieschka, ADDA with LDR
polarizability, and DDSCAT with GKDLDR (CLDR) polarizability.

Scatterer
mieschka ADDA–LDR DDSCAT–GKDLDR

ehh[%] evv[%] ehh[%] evv[%] ehh[%] evv[%]

sphd p 1 5.1×10−1 1.8×10−1 3.7×10−4 7.8×10−5 3.7×10−1 1.5×10−1

sphd p 2 6.4×10−3 9.0×10−1 4.2×10−2 6.2×10−2 3.1×101 4.8×101

sphd p 3 3.8×10−1 5.4×10−1 1.7×10−3 1.5×10−3 0. 0.
sphd p 4 5.6×10−2 2.8×10−1 6.3×10−6 9.6×10−3 2.0 1.1
sphd o 1 1.3×10−2 3.8×10−1 6.0×10−4 2.5×10−4 1.5×10−1 3.2×10−1

sphd o 2 8.0×10−3 1.9×10−3 1.3×10−3 1.9×10−2 2.8×102 7.2×10−1

sphd o 3 4.2×10−2 2.1×10−1 1.7×10−4 6.7×10−4 3.8×10−2 0.
sphd o 4 1.8×10−1 3.1 9.1×10−3 2.3×10−2 5.5 4.7×10−1

cyl 1 1.0 1.3 1.2×10−3 1.4×10−3 1.2×10−1 0.
cyl 2 4.3 1.5×101 1.5×10−3 1.2×10−1 1.8×101 8.4
cyl 3 1.5 8.5×10−1 2.4×10−3 1.3×10−4 7.7×10−2 0.
cyl 4 1.9 1.2×10−1 5.1×10−4 6.3×10−3 3.8 5.3×10−1

bi sph 1 – – 2.1×10−4 1.2×10−4 2.7×10−1 1.1×10−2

bi sph 2 – – 1.5×10−2 5.4×10−2 2.4×101 1.7
bi sph 3 – – 1.8×10−4 4.5×10−4 1.9×10−1 0.
bi sph 4 – – 3.1×10−2 2.2×10−2 1.6 2.0
cheb 5 1 2.0×10−1 3.4×10−1 7.5×10−4 2.8×10−4 – –
cheb 5 2 7.9×10−1 1.8×10−1 1.2×10−3 1.6×10−3 – –
cheb 5 3 2.4×10−1 3.5×10−1 1.2×10−3 6.9×10−5 – –
cheb 5 4 4.8×10−1 9.4×10−2 1.7×10−3 1.4×10−3 – –
cheb 45 1 1.2×10−3 6.2×10−4 6.1×10−4 9.8×10−6 – –
cheb 45 2 1.2 1.0 1.7×10−2 5.4×10−3 – –
cheb 45 3 3.2×10−4 3.9×10−4 9.8×10−4 7.7×10−5 – –
cheb 45 4 5.9×10−1 1.7×10−1 4.8×10−3 7.7×10−4 – –
cube 1 – – 7.6×10−4 3.6 2.4×10−1 6.2×10−1

cube 2 – – 1.1×10−2 1.6×102 2.4×101 4.4×101

cube 3 – – 1.4×10−3 2.1 1.1×10−1 1.4×10−1

cube 4 – – 1.1×10−2 4.3 5.0 2.9
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Fig. 2. vv-polarized DSCS of the scatterer cyl 2 in the orientations θp = 0o (black line) and
θp = 90o (red line) calculated with mieschka. The corresponding reciprocal scattering
angles θ = 90o and θ = 270o are marked by vertical lines.
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and Chebychev particles have smooth, continuously differentiable boundary surfaces. Based
on above investigations for cyl 2, one can conclude that the differences in the fulfillment of the
reciprocity condition originate from the inappropriate field expansions (9) – (11) in terms of
vector spherical wave functions especially around the cylindrical edges.

Now let us turn to the question whether the reciprocity fulfillment represents an appropriate
criterion to evaluate the scattering results of mieschka. The accuracy of a mieschka run, i.e.
the relative convergence of DSCS, is controlled by the relative error of the Barber–Hill criterion
(see Section 3.1.1). Therefore, investigations concerning the relation between this error and
the resulting reciprocity error have been conducted. Fig. 3(a) provides an example of these
investigations for the scatterer sphd p 2 in the two reciprocal configurations (θp = 0o, θ =
90o) and (θp = 90o, θ = 270o). First of all it can be observed that the reciprocity errors are
always smaller than the required relative errors. It is furthermore seen that the reciprocity errors
decrease and remain constant, respectively, with decreasing relative error. In the former case a
decreased relative error leads to larger values of the convergence parameters (ncut, lcut,nint). The
resulting higher order approximation of the scattered field leads, in turn, to a better reciprocity
fulfillment as long as numerical instabilities do not arise. On the other hand, a given set of
(ncut, lcut,nint) can meet different accuracy requirements of a mieschka run (see Table 3).
Equal sets of convergence parameters yield, of course, the same DSCS and, consequently, the
same reciprocity errors. This represents one reason for the plateaus of constant eαα values
observed in Fig. 3(a). Equal DSCS within a given numerical accuracy result also if lcut varies
only slightly with varying relative error at oblique incidence while (ncut,nint) do not change.
In this case, eαα becomes also constant for different relative errors (compare Fig. 3(a) and
Table 3). So, eαα alters with varying relative error only if ncut changes at the same time. The
relation between eαα and ncut is illustrated in Fig. 3(b). Note that this behavior has also been
found above for cyl 2. A decrease of the relative error from 5% to 1% led to an increase of ncut

from 36 to 42 while (lcut,nint) remained constant. As a result, the reciprocity error decreased.
So the relative error of the Barber–Hill criterion determines the relative convergence of DSCS
and the reciprocity fulfillment in the same way via (ncut, lcut,nint). The values of eαα represent,
therefore, a measure for the DSCS accuracy.
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Fig. 3. Reciprocity errors evv and ehh according to Eq. (7) for sphd p 2 in the two reciprocal
configurations (θp = 0o, θ = 90o) and (θp = 90o, θ = 270o) using mieschka (a) versus
the relative error within the chosen Barber–Hill convergence criterion, and (b) versus ncut.
(ncut, lcut,nint) are given by Table 3.

4.1.2. Programs scsmfo1b and mstm

Table 4 summarizes the reciprocity errors ehh and evv for the reciprocal configurations (θp = 0o,
θ = 90o) and (θp = 90o, θ = 270o), obtained with scsmfo1b and mstm, respectively, for
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Table 3. Convergence parameters (ncut, lcut,nint) determined automatically in the standard
mode of mieschka for sphd p 2 in the orientation θp = 90o at different input values of
the relative error within the chosen Barber–Hill convergence criterion. Note that the relative
integration error has been fixed to 0.1%.

Relative error [%] ncut lcut nint

(B–H crit.)
20 27 14 420
15 27 14 420
14 30 14 420
12 30 14 420
11 30 15 420
4 30 15 420
3 30 16 420
2 33 18 420
1 33 18 420
0.1 36 18 495
0.01 36 19 495
0.001 36 20 495
0.0001 39 21 540

the bispheres. The fulfillment of the reciprocity condition by both programs is comparable
with each other when using the convergence parameters given in Section 3.1.2. The orders of
magnitude of their reciprocity errors are also comparable with those of the program mieschka
for, e.g., the spheroids (see Table 2).

Table 4. Reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal configurations
(θp = 0o,θ = 90o) and (θp = 90o,θ = 270o) using scsmfo1b and mstm for the bispheres.

Scatterer
scsmfo1b mstm

ehh[%] evv[%] ehh[%] evv[%]

bi sph 1 3.8×10−2 2.4×10−1 6.3×10−2 2.8×10−2

bi sph 2 6.3×10−1 1.2×10−1 1.2×10−1 3.6×10−1

bi sph 3 4.0×10−1 1.5×10−1 1.4×10−2 6.0×10−2

bi sph 4 1.1×10−1 5.8 9.9×10−2 6.1×10−1

Since both programs use, in particular, scattered field expansions the question arises whether
there is any relation between a corresponding truncation parameter and the reciprocity error as
found above for the program mieschka. That is, does the reciprocity fulfillment tell us any-
thing about the degree of the scattered field approximation and the resulting DSCS ? Fig. 4 pro-
vides an example of the corresponding investigations conducted with the newer program mstm.
It shows the relative reciprocity errors evv and ehh for bi sph 2 in the two reciprocal configura-
tions (θp = 0o, θ = 90o) and (θp = 90o, θ = 270o) at different values of translation epsilon. As
noted in Section 3.1.2, this parameter determines the maximum order of the cluster T-matrix
and, in this way, the number of the scattered field expansion terms. It has been increased in
steps of a factor 10 in Fig. 4. The other parameters, influencing the convergence behavior of
mstm, have been fixed to the values listed in Section 3.1.2. In this way, the quality to treat each
individual sphere and to solve the interaction equations remained unchanged. The curves of
evv and ehh versus translation epsilon exhibit some variations. Nevertheless, the tendency of
decreasing reciprocal errors with a decreased translation epsilon is seen in the range between
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translation epsilon = 1 to 1× 10−7. A further decrease of this parameter beyond 1× 10−7

seems to result in constant reciprocal errors. Since smaller translation epsilon values yield, in
general, higher order approximations of the scattered field and of DSCS, the reciprocal error
can be regarded as an indicator for the DSCS accuracy, provided that no numerical instabilities
occur.
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Fig. 4. Reciprocity errors evv and ehh according to Eq. (7) for bi sph 2 in the two recip-
rocal configurations (θp = 0o, θ = 90o) and (θp = 90o, θ = 270o) using mstm versus
translation epsilon.

4.2. DDA results

ADDA and DDSCAT have not only a common theoretical basis, described in Section 3.2, and
use partly the same polarizability models (LDR/LATTDR and CLDR/GKDLDR). Their nu-
merical results are also equivalent. Test computations by ADDA with CLDR and DDSCAT with
GKDLDR for sphd p 1 in the two orientations θp = 0o and θp = 90o have provided the same
DSCS within all digits. In doing so, the same dipole size have been used. This conclusion has
been also confirmed in [47]. Therefore, each of both implementations can be regarded to be
a part of a single comprehensive DDA program with various selectable polarizability models.
Correspondingly, we will summarize the results obtained by ADDA and DDSCAT in a single
section and refer only to the special program, used, as necessary.

Let us have a look at the ADDA–LDR results first. Table 2 shows the reciprocity errors ehh

and evv for the configurations (θp = 0o,θ = 90o) and (θp = 90o,θ = 270o). It should be noted
that results for Chebyshev particles by a DDA implementation are presented here, to the best
of our knowledge, for the first time. It is seen that the reciprocity errors range between about
ehh = 6.3× 10−6 % for sphd p 4 and evv = 1.2× 10−1 % for cyl 2. Only evv for the cubes is
significantly larger being within about 2.1% – 160%. A comparison for the spheroids, cylinders,
and Chebyshev particles shows that the reciprocity is in most cases significantly better fulfilled
than by mieschka with its accuracy of 5%. Only ehh for sphd p 2 and cheb 45 3, and evv for
sphd o 2 are slightly larger. The reciprocity errors for the bispheres are also smaller than those
of scsmfo1b and mstm. The question is, why DDA with LDR yields, in most cases, a much
better reciprocity fulfillment than above T-matrix programs. And what about evv for the cubes?

An answer for these questions has been hinted in Section 3.2.1 using a notion of a set of point
dipoles. Here we expand it in a more rigorous manner. Consider the equation system (19) or
its initial integral equation in [37], for instance. One of the main ingredients in these relations
is the free space dyadic Green’s function Ḡ(ri,r j). It obeys the symmetry relation Ḡ(ri,r j) =
Ḡ(r j,ri). As was shown by Rother [10], this and the symmetry relation for the Green’s dyadic,
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belonging to the given boundary value problem, lead to a corresponding symmetry relation for
the matrix elements of the dyadic interaction operator (or the T-matrix). This, in turn, results in
the reciprocity property of the scatterer considered. So, above symmetry relation for Ḡ(ri,r j)
represents one condition for fulfilling reciprocity. As long as the other quantities in (19) such
as the polarizabilities do not extinguish the symmetry effect of Ḡ(ri,r j), i.e. their values are
the same for reciprocal configurations, the solution of the equation system meets a priori the
reciprocity condition. The numerical accuracy of its fulfillment is, then, solely determined by
the solution scheme applied to the equation system.

In all cases, except the cubes in the vv-polarization, we have just this situation. It is a direct
consequence of the LDR polarizability model. Remember that the formula for the LDR polar-
izability contains the factor S (see Eq. (15)). This factor depends on the propagation direction
a and polarization direction e0 of the incident electric field in the body system (see Eq. (16)). If
either a or e0 is along a coordinate axis, then S = 0. As a consequence, the symmetry effect of
Ḡ(ri,r j) is not extinguished so that the reciprocity condition is fulfilled a priori. In the ADDA
simulations, the cube is always oriented along the coordinate axes in the body system. Hence,
the scattering plane has to be rotated along the z-axis to match the scattering configuration
shown in Figs. 1(c) and 1(d). Therefore, we have a = (−0.7,0.7,0) and e0 = (0.7,0.7,0), and
hence S = 0.5, for the cubes at a v-polarized field incidence through the edge in the configura-
tion (θp = 90o, θ = 270o). This configuration leads to a different polarizability of the dipoles
so that reciprocity is not expected to be satisfied as accurately as in the other cases. Note that
a similar situation can be found for the spheroids sphd p 2 and sphd o 2 in the configurations
(θp = 0o, θ = 60o) and (θp = 120o, θ = 300o), for instance. Here, evv = 1.3× 10−3 % and
1.6×10−2 %, respectively, whereas ehh = 22% and 52%, respectively. Again, we have S �= 0 in
the second configuration (θp = 120o, θ = 300o), but now for the h-polarized incident field.

In order to illustrate this explanation, consider cube 1 and change the polarizability model
from LDR to RRC. In doing so, all other parameters are fixed, i.e. we have 16 dipoles per dipole
edge and εit = 10−5. The RRC model is independent of the incident field, i.e. of both a and e0

(see Section 3.2). Therefore it is expected that the evv value decreases to the order of ehh in Table
2. And indeed, evv drops down from about 3.6% to 1.1×10−3 % while ehh = 1.2×10−3 % stays
nearly on the same order as with LDR (see second column in Table 5 and compare with Table
2). A refinement of the discretization from 16 to 32 dipoles per dipole edge changes the values
of the hh- and vv-polarized DSCS, but has only a minor effect on the reciprocity error (compare
second and third column of Table 5). The latter stays on the order of about 10−3 % as for 16
dipoles. A decrease of the threshold of the iterative solver down to 10−10 has only a small effect
on the DSCS values themselves, but reduces the reciprocity errors down to the order of 10−9 %
(compare second and fourth column of Table 5). So the accuracy of the reciprocity fulfillment
at RRC is mainly determined by the threshold εit of the iterative solver, as stated above. This
is, however, not the main factor which determines the accuracy of a DDA simulation itself. It
is first of all affected by the discretization, i.e., by the number of dipoles. The discretization, in
turn, does not show a relation to the reciprocity accuracy within RRC.

That is, the reciprocity does not correlate with the DSCS quality if the former is a priori
fulfilled either by a specially chosen polarizability model, which is independent of the incident
field as RRC, or by the scattering configuration, as above for most particles at LDR. And small
values of the reciprocity error do not necessarily correspond to accurate DSCS. Fig. 5 provides
an example for this. It shows a comparison of the hh-polarized DSCS for the scatterer sphd o 2
in the orientations θp = 0o and θp = 90o obtained by ADDA–LDR and mieschka. Remember
that the corresponding reciprocity errors ehh are 1.3×10−3 % for ADDA–LDR and 8.0×10−3 %
for mieschka. They are both on the same order. The mieschka DSCS can be regarded as
the reference curves since its relatively small reciprocity error correlates with a correspondingly
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Table 5. Polarized DSCS and reciprocity errors ehh and evv, defined by Eq. (7), for the
reciprocal configurations c1 = (θp = 0o,θ = 90o) and c2 = (θp = 90o,θ = 270o) using
ADDA with RRC polarizability for cube 1 at different program parameters.

Dipoles per dipole edge 16 32 16
εit 10−5 10−5 10−10

dσhh/dΩ(c1) 8.426×10−1 8.613×10−1 8.427×10−1

dσhh/dΩ(c2) 8.427×10−1 8.613×10−1 8.427×10−1

ehh(c1,c2) [%] 1.2×10−3 6.4×10−4 4.5×10−9

dσvv/dΩ(c1) 9.649×10−1 9.872×10−1 9.649×10−1

dσvv/dΩ(c2) 9.649×10−1 9.872×10−1 9.649×10−1

evv(c1,c2) [%] 1.1×10−3 1.3×10−3 6.0×10−9

convergent differential scattering behavior as shown in Section 4.1.1. Later we will come back
again to this example and will see yet another indication that this assumption is justified. In
Fig. 5, larger differences are observed in the side- and backward scattering directions for both
orientations. The latter is crucial in LIDAR applications, for instance. That is, the ADDA–LDR
reciprocity error is much smaller than the error in DSCS, compared to mieschka. Note that
Gasteiger et al. [48] have recently applied reciprocity tests to their ADDA results. They do not
give any details, but the indirect conclusion is that the reciprocity error is also smaller than the
DSCS error. Note furthermore that we have also found cases where a good DSCS agreement
with mieschka has been obtained.
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Fig. 5. hh-polarized DSCS of the scatterer sphd o 2 in the orientations θp = 0o and θp = 90o

calculated using ADDA with LDR polarizability (black line) and mieschka (red line).

So the cases where the reciprocity is not automatically fulfilled are more interesting. They
offer the possibility to investigate whether some DSCS accuracy information can be drawn out
of the reciprocity error. In doing so, let us have a look at the CLDR polarizability. It depends
on the propagation direction a of the incident field as LDR (see Eq. (17)). Table 2 shows the
reciprocity errors obtained by DDSCAT with GKDLDR (CLDR). The reciprocity condition (5)
is well fulfilled for all scatterers at the smaller size parameter k0rv of 3. The same holds also for
the particles with k0rv = 15 and the smaller refractive index m = (1.313,5.889× 10−10). The
reciprocity errors range between 0% (within the given output accuracy of DDSCAT up to the
third digit after the decimal point) and about 5.5% for these cases. More critical are, however,
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the cases of scatterers having k0rv = 15 and m = (1.6,0.0005). Here, evv is about 8.4% for
cyl 2, 44% for cube 2, and 48% for sphd p 2. ehh ranges between about 18% for cyl 2 and
280% for sphd o 2. Comparisons between the results of DDSCAT–GKDLDR and mieschka
for the latter particle have given larger differences in the scattering angle range of about 60o

– 120o, consequently in 240o – 300o, and in the backscattering region between 170o – 180o

for the orientation θp = 0o. In contrast to this, a relatively good agreement has been found at
θp = 90o. It can therefore be assumed that this large reciprocity error is caused by problems of
DDSCAT–GKDLDR in the former orientation.

A comparison of the DDA results in Table 2 shows that the use of LDR gives, in most cases
considered, smaller reciprocity errors than CLDR (GKDLDR). This indicates that the reci-
procity is not automatically fulfilled and, consequently, that there is a relation between the reci-
procity error and DSCS for CLDR at the given particle configurations. Indeed, investigations
by use of ADDA–CLDR have shown a correlation between the reciprocity error and the number
of dipoles used in the computations. Fig. 6 provides an example for the scatterer sphd o 1 in
the two configurations (θp = 0o, θ = 90o) and (θp = 90o, θ = 270o). It is seen that evv and
ehh decrease with an increasing dipole number. As already mentioned above, an increase of the
dipole number should in turn lead to improved scattering cross sections. This is demonstrated
by Fig. 7(a). It shows a comparison of the hh-polarized DSCS for this particle in the orientation
θp = 0o obtained by using ADDA–CLDR at different discretizations and by mieschka. The
ADDA–CLDR results approach that of mieschka when refining the discretization from 32 to
128 dipoles in x-direction. A further improvement can be achieved by applying the extrapola-
tion technique described in Section 3.2.1 (see blue curve in Fig. 7(a)). So we have here a case
where the reciprocity error correlates with the DSCS accuracy.
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Fig. 6. Reciprocity errors evv and ehh according to Eq. (7) for sphd o 1 in the two reciprocal
configurations (θp = 0o, θ = 90o) and (θp = 90o, θ = 270o) using ADDA with CLDR
polarizability versus discretization level.

One can further think about determining the dipole number from reciprocity investigations in
such cases. But additional studies are needed to gain reliable and more generally valid criteria
to do so, due to the involved interplay of the different polarizability models and scattering con-
figurations. Moreover, there are certain fundamental limitations of this approach. In particular,
the DDA error for any scattering quantity (e.g. that for DSCS) can be divided into so-called
shape and discretization parts [39]. The former is defined as the difference between exact re-
sults for real (smooth) scatterer and that for cubically–discretized one (i.e. a union of cubical
dipoles). The result of the (standard) DDA, and hence the reciprocity error, is identical for both
shapes. Therefore, the reciprocity error can not directly correlate with shape error, but only with
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discretization one. And the interrelation between these two parts of DDA errors is not trivial.
While for a given scatterer both errors correlate with dipole size, and hence with each other,
the quantitative relationship largely depends on a particular scatterer. For instance, total error
equals the discretization one for a cube, but order-of-magnitude difference is easily possible for
a sphere [39].

Anyway, reliable DDA results can always be obtained by increasing the dipole number and/or
applying the extrapolation technique. To demonstrate this, let us come back to the above exam-
ple of the scatterer sphd o 2 with LDR of Fig. 5. Fig. 7(b) shows its hh-polarized DSCS for the
orientation θp = 0o obtained by using the programs ADDA–LDR at different discretizations and
mieschka. It is seen that an increase of the dipole number from 88, originally used in Fig. 5,
to 256 leads to a convergence of the ADDA curve towards that of mieschka. The differential
scattering behavior differs only in the peak at about θ = 165o and in the backscattering region.
The blue curve represents the extrapolated result. Its agreement with mieschka is comparable
to the former 256 grid curve. Larger differences are seen only in the peak around θ = 105o and
again in the backscattering region. Note that the convergence of the DDA results towards that
of mieschka is another indication to justify the use of the latter DSCS as reference, assumed
above.
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Fig. 7. hh-polarized DSCS of the scatterer (a) sphd o 1 and (b) sphd o 2 in the orientation
θp = 0o calculated using ADDA at different discretizations and mieschka (green line).
(a) ADDA with CLDR polarizability (black line – 32 dipoles in x-direction, red line – 128
dipoles in x-direction, blue line – extrapolated) (b) ADDA with LDR polarizability (black
line – 88 dipoles in x-direction, red line – 256 dipoles in x-direction, blue line – extrapo-
lated)

5. Summary and conclusions

In this paper, the fulfillment of the reciprocity by different T-matrix and DDA implementations
for various sets of scatterers has been investigated. In most cases, the reciprocal configurations
(θp = 0o,θ = 90o) and (θp = 90o,θ = 270o) have been considered. Although we focused on
specific DDA and T-matrix implementations, we believe that our study should be seen in a
broader context; the results help to establish the reciprocity condition as a useful accuracy test
in light scattering computations.

The reciprocity error (7) obtained by the T-matrix program mieschka ranges between about
3× 10−4 % and nearly 15%. In general, the reciprocity is better satisfied for particles having
a smooth, continuously differentiable boundary surface such as spheroids and Chebyshev par-
ticles than for scatterers with edges like finite circular cylinders. Except for evv of cyl 2 with
the 15%, the reciprocity error is always below the required accuracy of 5%, chosen within the
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convergence procedure of mieschka. The error of 15% results from the configurations consid-
ered, leading to investigations near deep down spikes of DSCS. Since it is hard for most scatte-
ring programs to achieve accurate DSCS values in such regions, other configurations should be
taken into account to circumvent these difficulties. This becomes more important for particles
with larger size parameters and/or refractive indices due to their complex differential scattering
behavior.

Furthermore, a correlation between the reciprocity error, on one hand, and the relative error
of the Barber–Hill convergence criterion and the series truncation parameter ncut, respectively,
has been found. Since the latter two parameters determine the relative convergence and conse-
quently the accuracy of DSCS, reciprocity checks represent an appropriate tool to evaluate the
far field scattering behavior obtained by mieschka for a given particle.

The reciprocity errors obtained by the programs scsmfo1b and mstm for the bispheres
are within the range of about 1.4× 10−2 % to 5.8%. Similar to mieschka, a relation be-
tween the reciprocity error and the convergence parameter translation epsilon of the newer
program mstm has been found. The latter parameter determines the maximum order of the
cluster T-matrix and, in this way, the number of the scattered field expansion terms. Therefore,
the reciprocal error can be regarded as an indicator for the DSCS accuracy of mstm.

Only very little has been mathematically proven concerning the convergence of T-matrix
approaches for nonspherical particles. Nevertheless, above results seem to indicate a general
behavior of these methods. An increase of the number of field expansion terms, either directly
or indirectly via corresponding convergence parameters, leads to an improvement of the relative
convergence of DSCS, provided that no numerical instabilities arise. At the same time, the
reciprocity error decreases. Thus the latter seems always to represent a measure for the DSCS
accuracy of these methods.

The variation of the reciprocity error obtained by DDA for different polarizability models
is essentially larger than that of above T-matrix programs. The error ranges between about
6.3× 10−6 % and 280%. One reason for such small reciprocity errors is the fact that the reci-
procity can be fulfilled a priori. These cases occur either if the employed polarizability model
is independent of the incident field (such as RRC) or it becomes independent of the incident
field for specific scattering configurations (as sometimes with LDR, e.g.). The numerical ac-
curacy of the reciprocity fulfillment is, then, solely determined by the solution scheme applied
to the DDA equation system. So, blindly applying reciprocity tests to DDA can lead to false
conclusions.

The reciprocity criterion is only applicable in conjunction with polarizability models that are
dependent on the incident field. The CLDR model has met this requirement for all the particles
and reciprocal configurations considered in this paper. Investigations by means of ADDA–CLDR
have revealed a correlation between the reciprocity error and the number of dipoles used in the
computations. It could further be shown that the increase of the dipole number leads, in turn,
to improved scattering cross sections. Consequently, reciprocity checks can potentially provide
information about the DSCS accuracy of DDA.

One of the main aim of this study was to identify programs and situations in which the reci-
procity fulfillment can be used as an criterion to evaluate scattering results. Additional inves-
tigations for a multitude of different reciprocal configurations and particle parameters are now
needed to derive ready-to-use criteria to quantitatively estimate the relative error of DSCS on
the basis of reciprocity tests. Concerning DDA, this can become intricately due to the involved
interplay of the different polarizability models and scattering configurations. But if available,
both users and program developers of scattering software can benefit from them. They can as-
sist a user in deciding whether the program at hand is appropriate for his needs. On the other
hand, they can help a developer to find errors during coding or reveal merits and demerits of
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implementations.
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