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In this chapter the problem of elastic light scattering, i.e. interaction

of electromagnetic waves with finite objects, is discussed. A detailed

overview of one of the widely used methods for plasmonics, the

discrete dipole approximation (DDA), is presented. This includes the

theory of the DDA, practical recommendations for using available

computer codes, and discussion of the DDA accuracy.

2.1 Introduction

Although the field of plasmonics has experienced a rapid growth

in recent decades, it started long before that. In particular, the

analytical solution for light scattering by a sphere was developed

by Mie [1] to explain the color of colloidal gold. Since then

a number of methods to solve Maxwell’s equations has been

developed [2] mainly motivated by other fields, such as astrophysics
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and atmospheric remote sensing [3]. Nowadays, an opposite

process is taking place—more and more methods of numerical

electromagnetics are applied to nanoparticles.

In this chapter we mainly discuss the problem of elastic light scat-
tering, i.e. interaction of electromagnetic waves with finite objects.

However, problems involving infinite scatterers, such as surfaces

or periodic objects, are also addressed. Other physical processes,

such as two-photon or Raman scattering, can be simulated using

the near-field distribution obtained during the solution of the

light scattering problem. Moreover, this chapter is limited to non-

magnetic scatterers.

The first goal of this chapter is to review existing methods

to simulate light scattering by plasmonic systems, including the

applicability of bulk electric permittivity to nanoparticles. The

second goal is to provide a detailed overview of one of the widely

used methods, the DDA. This includes the theory of the DDA,

practical recommendations for using available computer codes, and

discussion of the DDA accuracy.

2.2 Overview of Different Methods

2.2.1 Finite Scatterers in Homogeneous Medium

The Mie theory [1] and the T-matrix method [4] are very efficient for

(multilayered) spheres and axisymmetric particles (with moderate

aspect ratios), respectively. Several methods, applicable to particles

of arbitrary shapes, have been used in plasmonic simulations: the

boundary element method (BEM) [5, 6], the DDA [7–9], the finite-
difference time-domain method (FDTD) [10, 11], the finite element
method (FEM) [12, 13], the finite integration technique (FIT) [14] and

the null-field method with discrete sources (NFM-DS) [15, 16]. There

is also quasi-static approximation for spheroids [12], but it is not

discussed here.

The BEM, the DDA, the FEM, and the NFM-DS solve the Maxwell’s

equations in the frequency domain. The BEM and the DDA solve

by discretization the corresponding surface- and volume-integral

equation, respectively. In the FEM the differential form of Maxwell’s
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equations is solved by volume discretization. The NFM-DS is based

on expansion of the electromagnetic field as a combination of

spherical wave functions with different centers (so-called, discrete

sources), which amplitudes are obtained from boundary conditions

at the particle surface.

The FDTD and the FIT solve the time-domain Maxwell’s equations

in the original and modified form, respectively. These two methods,

as well as the FEM, need to discretize not only the particle but also

some space around it.

There are a few reviews of computational methods in plasmonics

[12, 17–19], but none of them aims at full comparison of the

methods. General properties of the methods allow one to analyze

their scaling properties, e.g. how the simulation time and memory

requirements scale with volume of the particle [17]. It does not

help, however, in answering the main question: “Given a scattering

problem and required accuracy, which method is the fastest?” For

instance, the variation of refractive index influences computational

resources both directly and indirectly through deteriorating accu-

racy, requiring one to refine discretization.

A systematic comparison of the methods should include the

simulation of the several (the more—the better) test problems by

these methods running on the same hardware. Such comparisons

were performed for dielectric particles, see, e.g. Refs. [20–22], but

they are not relevant for the plasmonics. On contrary, in plasmonics

such comparisons are very rare. We can cite three examples, which

both considered a single specific scattering problem, making it hard

to generalize the conclusions. In particular, the FDTD and the FEM

were compared for computation of near-field around 50-nm silver

cube interacting with 600-nm plane-wave [12]. Accuracy of the

FEM was worse than that of the FDTD but still satisfactory. The

FEM simulation required 4 hours on a single 3.4 GHz processor,

while FDTD—8 hours on 256 double-core 2.6 GHz processors.

Another comparison [14] addressed the DDA and the FIT (the

latter implemented in the commercial software) for simulation of

refractive index sensitivity of rhombic hybrid Au-Ag nanostructure

array. Both methods obtained the same value of sensitivity, but the

DDA was faster (not specified how much).
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The third example [19] is the most systematic one. The DDA,

the FEM, and the FDTD were used for the calculation of scattering

spectrum of 80-nm gold sphere with several discretizations levels

for each method. Unfortunately, the accuracy and simulation times

are discussed separately, so it is impossible to say which time

corresponds to which accuracy (discretization level). General trend

is that DDA is faster but less accurate than the FEM. Simulation time

of the FDTD is comparable to that of the FEM, but its accuracy is

the worst of three methods. Summarizing all three examples, truly

systematic comparisons in these fields will definitely benefit the

community.

Finally, the basic configuration for all methods is a finite particle

in vacuum. However, a scattering problem of a finite particle

in homogeneous non-absorbing dielectric medium (with a real

refractive index n0) is equivalent to the basic one after adjusting

the wavelength λ → λ/n0 and all refractive indices ñ → ñ/n0, due

to the corresponding invariance of the frequency-domain Maxwell’s

equations without sources.

2.2.2 Periodic Scatterers

Configurations, obtained by 1D or 2D periodic repetition of a

nanoparticle, are common in plasmonics. And most methods can,

after some modifications, simulate such configurations, discretizing

only one instance of the nanoparticle. Corresponding modifications

for the FDTD, the FIT, and the FEM consist in replacing absorbing

boundary condition on the outer boundary of the computational

domain by a periodic one, see, e.g. Ref. [11].

Modifications required for the BEM and the DDA are more

involved. The core entity in these two methods is the Green’s

tensor, which describes interaction between two discretization

elements (e.g. see Eq. (2.6) below for the DDA). To account

for particle periodicity, the Green’s tensor should be modified

to include contributions from all periodic copies of the same

discretization element, which involves infinite sums. For the BEM

such approach is discussed in Ref. [23], for the DDA in Refs. [24, 25],

including implementation in the freely-available computer codes

(see Sec. 2.5.4).
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2.2.3 Scatterers Near an Infinite Plane Surface

Another common configuration in plasmonics is a particle upon or

near semi-infinite substrate. This substrate may have no plasmonic

properties by itself, e.g. glass, but it still modifies the light scattering

properties of the nanoparticle. The FDTD, the FIT, and the FEM can

naturally handle such problems, because the effect of the interface

is automatically accounted by the part of the substrate falling into

the computational domain, when appropriate absorbing boundary

conditions are used [11, 13].

The BEM and the DDA can solve this problem discretizing only

the particle itself, if the Green’s tensor is adjusted to account for

the substrate. A resulting Green’s tensor is expressed in terms of

Sommerfeld integrals, accurate evaluation of which is challenging

by itself [26]. This has been implemented into the DDA by a

number of different researchers [27–30]. Moreover, a simpler way

to calculate the Green’s tensor in the presence of substrate has

been recently proposed by Mackowski [31]. The NFM-DS can also

simulate such configurations, taking account of the substrate by

additional boundary conditions [16].

Alternative way to approach this scattering problem by the DDA

in their standard form is a brute-force discretization of a large

block of substrate together with the particle [32, 33]. Finite size of

this block does introduce certain artifacts in the computed results.

However, they can be diminished by using either the Gaussian beam

with size smaller than that of the block [34] or by using empirical

compensation formula [32], which also uses result of simulations

for truncated substrate without the particle. Similar ideas should, in

principle, be also applicable to the BEM.

Finally, periodic scatterers and particles on a substrate, discussed

above, are the simplest examples of the scattering problem in a

complex background. Real applications may present more elaborate

configurations, like multi-layered substrate or periodic array in a

film. However, this presents no qualitative difference. In particular,

using a proper Green’s tensor for the complex background [35], the

standard DDA or BEM can be used, discretizing only the scatterer

itself.
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2.3 Electric Permittivity

There is a consensus that Maxwell’s equations work fine for

nanoparticles with size down to at least 1 nm. In other words, a good

fit of experimental data can be obtained using a rigorous simulation

method and proper data for the complex electric permittivity ε̃

or equivalently the complex refractive index ñ [36]. This makes

choosing a particular value of ε̃ an important practical question,

which can be divided into two parts:

(1) How to choose a correct value of ε̃ for bulk material?

(2) How the bulk values should be adjusted for small nanoparticles?

First question is a consequence of existence of several sources of

data for each material with sometimes significant differences. In

particular, for gold there are two widely used sources: by Johnson

and Christy [37] and by Palik [38]; however, several other options

are also available [7, 36]. Although Khlebtsov [36] provided a

prescription based on his experience, choosing the best set of ε̃

values is still ambiguous. To reliably choose one option over the

others one should use a precise experimental data, in which ε̃ is

the most important uncertainty. This strict requirement can, in

principle, be complied by single-particle experiments, see, e.g. Ref.

[18].

For other plasmonic materials the situation is similar to that

of gold. In particular, both sources [37, 38] contain also data for

silver and copper. Moreover, handbook by Palik [38] contains data

for much more materials with a certain critique justifying the choice

of particular values. Some of the known sources for many materials

can be found in an online database [39].

Apart from tabulated experimental data, there exist analytical

models for the refractive indices. The most widely used is the Drude
free-electron model [37] (see Sec. 1.2.1):

ε̃(ω) = 1 − ω2
p

ω (ω + i/τ )
, (2.1)

where ωp is plasmon frequency and τ is the mean relaxation time.

While this model is generally accurate for low frequencies, it is

usually not so for ω ∼ ωp. Therefore, it is not recommended to use
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this model in the simulations. The only exception is time-domain

methods (e.g. the FDTD), in which only an analytical model for ε̃(ω)

can be used, not a set of values. But even then it is recommended to

use more elaborate multi-parametric models to better approximate

the experimental values of ε̃ [11].

Second question arises because particles may be comparable or

smaller than electron mean free path. Thus, ε̃, determined mostly by

free electrons, is effected by reflections from surface. The common

way to include this effect is [36]:

ε̃(ω, a) = ε̃b(ω) +�ε̃SD(ω, a) , (2.2)

�ε̃SD(ω, a) = ε̃Dr
p (ω, a) − ε̃Dr

b (ω)

=
[

1 − ω2
p

ω (ω + i/τb + i/τs )

]
−
[

1 − ω2
p

ω (ω + i/τb)

]

= ω2
p

ω (ω + i/τb)
− ω2

p

ω (ω + i/τb + i/τs )
, (2.3)

where �ε̃SD is the surface damping correction, ε̃b(ω) is bulk

permittivity, a is the size of the nanoparticle, ε̃Dr
b (ω) and ε̃Dr

p (ω, a) are

bulk and small-particle Drude models respectively, τb and τs are bulk

and surface-induced damping time respectively. Surface damping is

expressed as [36]:

1

τs
= AνF

L ef f
, (2.4)

where νF is the Fermi velocity, L ef f is the effective electron mean

free path, and A is a dimensionless parameter determined by the

details of scattering of electrons by the particle surface (which is

often simply set equal to 1). Although Eq. (2.4) was originally derived

by simple physical, or even geometrical, considerations, later works

using ab initio quantum analysis lead to the same result with only

difference in value of constant A (reviewed in Ref. [36]).

The only remaining question is dependence of L ef f on particle

size. For a sphere with radius a, L ef f = a and L ef f = 4a/3 for

isotropic and diffuse scattering respectively. For particles of other

shapes the following empirical formula can be used L ef f = 4V /S
[36], where V and S are volume and surface area of the particle,

respectively.
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Refractive indices of metals, obtained from value of ε̃ discussed

above, vary from moderate values (close to 1 in complex plane) to

values with large Im[ñ] = κ and |ñ|. Although real applications

may employ different domains of ñ, in the remainder of this chapter

“plasmonic refractive index” denotes the large values of |ñ|. The

main motivation for that is that such values of ñ are the most

problematic for the DDA simulation method (see Sec. 2.4.2.1).

2.4 Theory of the DDA

This section is largely based on review [40]. However, it is here

restructured and updated with special emphasis given to plasmonic

applications.

2.4.1 General Framework

We assume exp (−iωt) time dependence of all fields and that the

scatterer is non-magnetic. For simplicity the ω dependence of all

quantities is omitted. Quantities indicated with a ˜ are complex

numbers. Also the electric permittivity ε̃ is assumed isotropic to

simplify the derivations; however, extension to arbitrary dielectric

tensors is straightforward. Rigorous derivation of the DDA starts

with the integral equation governing the electric field inside the

finite dielectric scatterer [41, 42]:

Ẽ(r) = Ẽinc(r) +
∫

V \V0

d3r′G̃0 (
r, r′) χ̃(r′)Ẽ(r′)

+ M̃(V0, r) − L(∂V0, r)χ̃(r)Ẽ(r) , (2.5)

where Ẽinc(r) and Ẽ(r) are the incident and total electric field at

location r, and χ̃(r) = (ε̃(r) − 1) /4π is the susceptibility of the

medium at point r. V is the volume of the particle, i.e. the volume

that contains all points where the susceptibility is not zero. V0 is a

small volume around r, G̃
0

(r, r′) is the free-space Green’s tensor:

G̃
0 (

r, r′) = exp (ikR)

R

[
k2

(
I − RR

R2

)
− 1 − ikR

R2

(
I − 3

RR
R2

)]
,

(2.6)
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where I is the identity tensor, k = ω/c is the free-space wave vector,

R = r − r′, R = ||R||, and RR is a tensor defined as (RR)μν = RμRν
(μ and ν are Cartesian components). Note that Eq. (2.6) is obtained

directly from Eq. (1.213).

M̃ is the following integral associated with the finiteness of the

exclusion volume V0:

M̃ (V0, r) =
∫

V0

d3r′
[
G̃

0 (
r, r′) χ̃(r′)Ẽ(r′) − Gst (r, r′) χ̃(r)Ẽ(r)

]
,

(2.7)

where Gst (r, r′) is the static limit (k → 0) of G̃
0

(r, r′):

Gst (r, r′) = − 1

R3

(
I − 3

RR
R2

)
. (2.8)

L is the so-called self-term tensor:

L (∂V0, r) = −
∫
∂V0

d2r′ n̂′R
R3
, (2.9)

where n̂′ is an external normal to the surface ∂V0 at point r′. L is

always a real, symmetric tensor with trace equal to 4π [43], which

does not depend on the size of the volume V0. On the contrary, M̃
does depend on the size of the volume; moreover it approaches zero

when the size of the volume decreases [42] (if both χ̃(r) and Ẽ(r) are

continuous inside V0).

A large variety of methods to solve Eq. (2.5) is thoroughly

discussed in Ref. [40]. This chapter is devoted to the mainstream

DDA, compatible with the fast Fourier transform (FFT) acceleration

(Sec. 2.4.2). It is obtained by discretization of Eq. (2.5) on a regular

cubical grid [27] by dividing the scatterer into N cubical subvolumes

(dipoles) Vi (i = 1, . . . , N ). Size of each dipole is d, and its volume

Vd = d3. Setting V0 = Vi and r = ri , the center of cube Vi , Eq. (2.5)

can be rewritten as:

Ẽi = Ẽinc
i +

N∑
j �=i

∫
V j

d3r′G̃0
(ri , r′)χ̃(r′)Ẽ(r′) + M̃(Vi , ri ) − Li χ̃i Ẽi ,

(2.10)

where Ẽi = Ẽ(ri ), Ẽinc
i = Ẽinc(ri ), χ̃i = χ̃(ri ), Li = L(∂Vi , ri ).

Moreover, for this specific (cubic) geometry of Vi and ri , Li is

calculated analytically yielding [25]:

Li = 4π

3
I . (2.11)
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The set of Eq. (2.10) (for all i) is exact except for possible errors in

replacing V by a set of cubical cells Vi (see Sec. 2.4.3.4). The principal

approximating assumptions are:∫
V j

d3r′G̃0
(ri , r′)χ̃(r′)Ẽ(r′) = Vd G̃

0

i j χ̃(r j ) Ẽ(r j ) , (2.12)

M̃ (Vi , ri ) = M̃i χ̃(ri ) Ẽ(ri ) . (2.13)

They state that corresponding integrals linearly depend upon the

values of χ̃ and Ẽ at point ri and allow one to rewrite Eq. (2.10) as:

Ẽi = Einc
i +

N∑
j �=i

G̃
0

i j V j χ̃ j Ẽ j + (M̃i − Li
)
χ̃i Ẽi . (2.14)

The particular expressions for M̃i and G̃
0

i j determine the quality of

the approximation and are discussed in Sec. 2.4.3.2 and Sec. 2.4.3.1.

The most widely used method to justify assumptions in Eq. (2.12)

and Eq. (2.13) is assuming Ẽ(r) and χ̃(r) constant inside each

subvolume:

Ẽ(r) = Ẽi , χ̃(r) = χ̃i for r ∈ Vi , (2.15)

implying:

M̃i =
∫

Vi

d3r′
(
G̃

0
(ri , r′) − Gst(ri , r′)

)
, (2.16)

G̃
0

i j = 1

Vd

∫
V j

d3r′G̃0
(ri , r′) . (2.17)

Such formulation is equivalent to the method of moments [41]

applied to Eq. (2.5), using unit pulse and delta-function (point-

matching) as basis and testing functions respectively.

Two equivalent forms of Eq. (2.14) are [41, 44]:

Ẽinc
i = Ẽexc

i −
∑
j �=i

G̃
0

i j ˜̧ j Ẽexc
j , (2.18)

Ẽinc
i = ˜̧ −1

i P̃i −
∑
j �=i

G̃
0

i j P̃ j . (2.19)

They seek for the exciting electric fields (excluding the field by the

dipole itself)

Ẽexc
i = (I + (Li − M̃i

)
χ̃i
)

Ẽi , (2.20)
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and the dipole polarizations

P̃i = ˜̧ i Ẽexc
i = Vdχ̃i Ẽi , (2.21)

respectively. DDA implementations are mostly related to the dipole

polarization of Eq. (2.19) and Eq. (2.21).

The dipole polarizability tensor ˜̧ i is defined as:

˜̧ i = Vdχ̃i
(
I + (Li − M̃i

)
χ̃
)−1 = ˜̧ CM

i

(
I − M̃i ˜̧ CM

i /Vd
)−1

, (2.22)

where we used Eq. (2.11) and ˜̧ C M
i is the Clausius–Mossotti (CM)

polarizability obtained assuming M̃i = 0:

˜̧ CM
i = IVd

3

4π

ε̃i − 1

ε̃i + 2
, (2.23)

with ε̃i = ε̃(ri ). Note that Eq. (2.21) follows Eq. (1.270) and, for a

sphere, Eq. (2.23) is the effective polarizability of Eq. (1.192).

Solution of system of linear equations in Eq. (2.14), or one of

its equivalent forms, constitutes the most challenging computational

part of the DDA, discussed in Sec. 2.4.2. All measurable quantities of

interest can be computed from the obtained internal (total) fields or

dipole polarizations.

Electric fields near or far from scatterers (called near-fields and

scattered-fields, respectively) are obtained directly from Eq. (2.5) for

a point r outside the scatterer, where χ̃(r) = 0. After discretization

of the scatterer volume it becomes:

Ẽ(r) = Ẽinc(r) +
N∑
i

∫
Vi

d3r′G̃0 (
r, r′) χ̃(r′)Ẽ(r′) , (2.24)

similar to Eq. (2.10). To make Eq. (2.24) ready for practical use,

approximations similar to Eq. (2.12) should be used∫
Vi

d3r′G̃0 (
r, r′) χ̃(r′)Ẽ(r′) = G̃

0

i (r)P̃i . (2.25)

The simplest possible expression for G̃
0

i (r) is:

G̃
0

i (r) = G̃
0
(r, ri ) . (2.26)

For r → ∞ it is more convenient to use the scattering amplitude
F̃ instead of the total electric field Ẽ (see, e.g. Ref. [45]):

Ẽ(r) − Ẽinc(r) = Ẽsca(r r̂) = exp (ikr)

−ikr
F̃(r̂) , (2.27)
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where r̂ = r/r is the unit vector in the scattering direction. In

particular, Eq. (2.25) and Eq. (1.220) imply:

F̃(r̂) = −ik3
(
I − r̂r̂

) N∑
i

P̃i exp
(−ikri · r̂

)
. (2.28)

The DDA is perfectly applicable to any incident field, provided

only that its values can be calculated for all ri . However, for simplicity

we further assume a plane incident wave with unit amplitude:

Ẽinc(r) = êinc exp
(
ikk̂inc · r

)
, (2.29)

where k̂inc is the incident direction. The amplitude and Mueller
scattering matrices for direction r̂ are determined from F̃(r̂)

calculated for two orthogonal incident polarizations [46]. Note that

F̃(r̂) = −ikF̃
(

r̂, k̂inc
)

· êinc , following the definitions of Sec. 1.6.2.

Integral scattering quantities, such as scattering cross-section
C sca and extinction cross-section C ext (see Sec. 1.6.1) can also be

obtained from F̃(r̂) [46, 47]:

C sca = 1

k2

∫
A

dA
∣∣∣∣F(n̂)

∣∣∣∣2 , (2.30)

C ext = 4πk
N∑
i

∫
Vi

d3r′Im
[
χ̃(r′)Ẽ(r′) · Ẽinc∗(r′)

]
= 4π

k2
Re
[(

êinc)∗ · F̃(k̂inc)
]
. (2.31)

Absorption cross section C abs is derived directly from the

internal (total) fields [47]:

C abs = 4πk
N∑
i

∫
Vi

d3r′Im
[
χ̃(r′)

] ∣∣∣∣Ẽ(r′)
∣∣∣∣2 , (2.32)

which is most commonly approximated using the notion of point

dipoles [48],

C abs = 4πk
N∑
i

[
Im
[
P̃i · Ẽexc∗

i

]− (2/3) k3
∣∣∣∣P̃i
∣∣∣∣2] , (2.33)

to enable practical evaluation. Other alternatives are discussed in

Sec. 2.4.3.3. Radiation forces and torques can also be calculated [49–

51].
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2.4.2 Numerical Scheme

2.4.2.1 Iterative methods to solve the linear system

There are two general types of methods to solve linear systems of

equations Ãx̃ = ỹ, where x̃ is an unknown vector and Ã and ỹ are

known complex matrix and complex vector, respectively: direct and

iterative [52]. For a general n × n matrix (in the DDA n = 3N )

computation time of direct inversion (e.g. LU decomposition) is

O (n3) and storage requirements O (n2), while computation time for

one iteration is O (n2) [53]. Generally, iterative methods converge

in O (n) iterations, and sometimes they do not converge at all.

However, in many cases satisfactory accuracy can be obtained after a

much smaller number of iterations. In these cases iterative methods

can provide significant increases in speed, especially for large n.

Moreover, most iterative methods access the matrix Ã only through

matrix-vector multiplication (sometimes also with the transposed

matrix), which allows the construction of special faster routines for

calculation of these products (see Sec. 2.4.2.2). Throughout DDA

history, mostly iterative methods were employed. At first, they were

used to accelerate computations [54], but they also allowed larger

numbers of dipoles to be simulated [55], since storage of the entire

matrix is prohibitive for direct methods. The most widely used

iterative methods in the DDA are Krylov-space methods, also known

as conjugate-gradient (CG) family of methods [53]. A number of

studies were devoted to comparison of different iterative methods

in DDA simulations [56–60], but it is still hard to identify the

most efficient one. In practical applications bi-CG-stabilized (Bi-
CGSTAB) and quasi-minimal-residual (QMR) iterative solvers [53] are

most commonly used, as implemented in production codes (see

Sec. 2.5.4). However, less tested alternatives of these methods were

also proposed [61–63], designed for better convergence in the finite-

precision arithmetic. An important advantage of the QMR is that

complex-symmetric property of the DDA interaction matrix can be

used to halve the number of matrix-vector multiplications [64] (and

thus computational time). Assume that the used formulation for G̃
0

i j

retains the symmetry properties of G̃
0
(ri , r j ), i.e.

G̃
0

i j = G̃
0

j i . (2.34)
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In particular, this is true for all formulations described in Sec. 2.4.3.1.

Then for any of the equivalent systems of DDA equations (Eqs. 2.14,

2.18, 2.19) Ã is complex-symmetric if and only if ˜̧ i is complex-

symmetric for all i . The latter is true for all cases except chiral and

non-diagonal anisotropic absorbing materials. Moreover, when ˜̧ i is

complex-symmetric, it can be decomposed as ˜̧ i = ˜̨ T
i

˜̨ i , leading to

the following form of DDA equations [65]:

Ãx̃ = ỹ ; Ãi j = Iδi j − ˜̨ i G̃
0

i j
˜̨ T

j (2.35)

x̃i = ˜̨ i Ẽexc
i = ( ˜̨ T

i

)−1
P̃i ; ỹi = ˜̨ i Ẽinc

i ,

which is an intermediate one between Eq. (2.18) and Eq. (2.19).

An important part of the iterative solver is preconditioning,

which effectively decreases the condition number of the matrix Ã
and, therefore, speeds up convergence. Although there are a large

variety of preconditioners in the literature [53], most of them

apply to general dense or sparse matrices. However, any effective

preconditioner for the DDA should not significantly modify the

block-Toeplitz structure of Ã (see Sec. 2.4.2.2). That is why only the

simplest Jacobi preconditioner (transforming Ã into a matrix with

unit diagonal) has been used. For instance, Eq. (2.35) corresponds

to Jacobi-preconditioned Ã [65]. Number of iterations required for

a particular scattering problem is hard to predict a priori; the best

estimate is usually provided by empirical data. Still, there are general

theoretical results. Rahola [66] showed that the spectrum of the

integral scattering operator for any homogeneous scatterer is a line

in the complex plane going from 1 to |ñ|2, except for a small amount

of points, corresponding to resonances for the specific size and

shape, e.g. so-called Mie resonances for spheres. Based on this he

derived an estimate for the optimal (best) reduction factor for any

Krylov-space iterative method (norm of the residual is multiplied by

this factor every iteration),

γ =
∣∣∣∣ ñ − 1

ñ + 1

∣∣∣∣ , (2.36)

which is especially accurate for particles much smaller than λ,

when no above-described resonances are present. Since Ã is a

discretization of the integral operator, their spectra are similar (see

also [56]). Hence, Eq. (2.36) applies to Ã as well, although not exactly.
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An important consequence of this analysis is that the spectrum of

Ã, and thus convergence should not depend significantly on the

discretization. This fact was also confirmed empirically [56, 67, 68].

Budko et al. [69] derived optimal value of γ when using the general

overrelaxation iterative method. This estimate of γ is similar but

always greater than Eq. (2.36), since this stationary iterative method

also constructs the solution in the Krylov subspace but not in the

most optimal way.

To estimate the required number of iterations Niter one can

combine Eq. (2.36) with commonly used value of 10−5 for

convergence threshold of the iterative solver:

Niter ≈ ln
(

10−5
)

ln (γ )
= 5 ln(10)

ln |(ñ + 1) / (ñ − 1)| . (2.37)

Applicability of Eq. (2.37) is illustrated by comparison with

simulation data [67] in Fig. 2.1. Shown data is for nanospheres

discretized with 128 dipoles per diameter; however, a particular

value of this parameter is not important, as discussed above. More

details about these data are given in Sec. 2.6. The estimate describes

well the general behavior of Niter versus λ—it is accurate within the

factor of two and lies in between the two tested DDA formulations.

Figure 2.1 Number of iterations for DDA simulations of gold nanospheres

(in vacuum) in logarithmic scale. Real data is for two diameters D and two

DDA formulations (see Sec. 2.4.3); estimate is based on Eq. (2.37).
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Figure 2.2 Estimated number of iterations, based on Eq. (2.37), for DDA

simulations of metallic nanoparticles (in vacuum) in logarithmic scale.

Equation (2.37) is further used to estimate Niter in a wider

wavelength range for metals commonly used in plasmonics. The

result is shown in Fig. 2.2, using reference refractive index of gold,

silver, and copper from [37] and of aluminium from [70]. The general

features are small Niter for small λ (< 50–500 nm depending on the

metal), much larger and almost constant Niter for large λ (>1−1.5

μm), and rapid change somewhere in between. To understand such

behavior let us perform an asymptotic expansion of Eq. (2.37) for

large |ñ|:

Niter ≈ 5 ln(10)

η + O (η2)
≈ 5 ln(10)

2

1 + |ñ|2

Re[ñ]
, η = 2Re[ñ]

1 + |ñ|2
, (2.38)

and apply it to the Drude model (see Eq. (2.1)). In particular, for

most metals in the near-infrared the Drude model is accurate and

the following limit is satisfied:

1/τ 
 ω 
 ωp ⇒ Niter (ω) ≈ 5ωpτ ln(10) . (2.39)

This allows one to quickly estimate Niter for any other metal

in the near-infrared using its Drude parameters. Unfortunately, the

Drude model is usually inaccurate for ω ≈ ωp and, hence, does not

provide an accurate estimate of the wavelength position of the tran-

sitions in Fig. 2.2. If a nanoparticle is located in dielectric medium
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with refractive index ñ0, the level of the plateau in Fig. 2.2 is ñ0

times smaller, which follows from Eq. (2.38). Budko and Samokhin

[71] generalized Rahola’s results to arbitrary inhomogeneous and

anisotropic scatterers. Moreover, they described a convex region in

the complex plane containing the whole spectrum of the integral

scattering operator, including resonances. This region depends only

on the values of ñ inside the scatterer but not on its size and

shape. For instance, the size can be comparable or larger than λ.

However, size and shape do influence the particular distribution of

eigenvalues inside this region; hence, the geometry of the region can

be used only to deduce the upper bound of Niter . In particular, for

ñ with zero or small imaginary part this region comes close to the

origin, which potentially leads to large Niter . The latter was shown

in DDA simulations for real ñ and large size [59]. Moreover, Ayranci

et al. [72] observed the decrease of Niter with increasing Im[ñ] for

sizes comparable with λ. However, for particles much smaller than

the wavelength Eq. (2.36) is valid, which has no special behavior for

real ñ.

2.4.2.2 Block-Toeplitz structure and FFT acceleration

A square matrix Q of size N × N is called Toeplitz matrix of order

N if Qi j = Bi− j , i.e. matrix elements on any line parallel to the main

diagonal are the same [52].

In a block-Toeplitz (BT) matrix (of order N1) elements Bi are not

numbers, but square matrices of size f × f themselves:

Q =

⎡⎢⎢⎢⎢⎣
B0 B1 . . . BN1−1

B−1 B0

. . .
...

...
. . .

. . . B1

B−N1+1 . . . B−1 B0

⎤⎥⎥⎥⎥⎦ (2.40)

In a 2-level BT matrix (of order N1, N2) the components Bi are

BT matrices themselves (of order N2 and size f × f ). Proceeding

recursively a M-level BT (MBT) matrix of order (N1, N2, . . . , N3) and

size f × f for any number of levels can be defined.

Consider a rectangular lattice nx × ny × nz, numbered in the

following way:

i = nynz (nx − 1) ix + nz
(

ny − 1
)

i y + nziz, (2.41)
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where iμ ∈ {1, . . . , nμ
}

indicates the position of the element along

the axes. Let us also define the vector index i = (ix , i y, iz
)

. Then G̃
0

i j ,

defined by Eq. (2.17), satisfies the following:

G̃
0

i j = G̃
′
i−j (2.42)

Analogously to Eq. (2.34) it is further assumed that Eq. (2.42)

is satisfied for all used formulations for G̃
0

i j . First, Eq. (2.42) can be

used to greatly reduce the storage requirements of iterative methods

by use of indirect addressing from O (N 2) to O (N ). Second, together

with Eq. (2.34) it defines a symmetric 3-level BT matrix G̃
0

(orders

of subsequent levels are nx , ny, nz) whose smallest blocks are 3×3

matrices (tensors) G̃
0

i j . The BT-structure can be used for acceleration

of direct methods to solve the linear system, which was applied

to the DDA by Flatau et al. [73, 74]. However, these methods are

not discussed here in details due to two major limitations. First,

their computational complexity is still larger than that of iterative

methods (see below). Second, the whole interaction matrix Ã (not

only G̃
0
) has to be BT, which is true if and only if polarizabilities of

all dipoles in the rectangular grid are the same or, equivalently, the

scatterer is homogeneous and rectangular.

The major practical application of the BT-structure is accelera-

tion of matrix-vector product, which is the computational bottleneck

of any Krylov-subspace iterative method. Goodman et al. [75]

showed that multiplication of 3 level BT-matrix G by a vector can

be transformed into a discrete convolution:

ỹi =
N∑

j=1

G̃
0

i j x̃ j =
(nx ,ny,nz)∑
j=(1,1,1)

G̃
′
i−jx̃j =

(2nx ,2ny ,2nz)∑
j=(1,1,1)

G̃
′
i−jx̃

′
j , (2.43)

where G̃
′
i−j is defined by Eq. (2.42) for

∣∣iμ∣∣ ≤ ∣∣nμ∣∣ (and G′
0 = 0 ) and

x̃′
j =
{

x̃j , ∀μ1 ≤ jμ ≤ nμ
0 , otherwise.

(2.44)

Both G′ and x̃′ are then regarded as periodic in each dimensionμ

with period 2nμ. A discrete convolution can be transformed by FFT

to an element-wise product of two vectors, which is easily computed

in O (N ) operations. It requires evaluation of a direct and inverse

FFT for each matrix-vector product. Each of them is a 3D FFT of
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order 2nx × 2ny × 2nz with O (N ln(N )) complexity. This operation

is done for each of the 3 Cartesian components of x̃′, while FFT of 6

independent tensor components of G′ is done only once during the

initialization of the iterative solver.

Alternative methods of FFT acceleration were proposed [73, 76],

but the resulting complexity is only slightly different from the one

discussed above. It is important to note that for any form of DDA

equations [Eqs. 2.14, 2.18, 2.19, 2.35] product of interaction matrix

by vector is reduced to product of G̃
0

by vector through a few O (N )

operations, such as element-wise product of two vectors. Therefore,

in all these cases the complexity of one iteration of an iterative solver

is O (N ln(N )).

As noted above, both the BT-structure and the FFT-acceleration

require a cubical lattice of dipoles that completely fills a rectangular

box. This has two drawbacks: (1) additional void dipoles should

be introduced to build up the grid up to the full box enclosing

the particle; (2) position and size of the dipoles cannot be chosen

arbitrarily to better describe the shape of the scatterer. These

drawbacks are minor for solid and relatively smooth particles,

which is usually the case in plasmonics. However, they may become

critical for highly porous particles or clusters of particles, where

the monomer has a size comparable to a single dipole. Another

method to accelerate the DDA computations without the above

limitations is the fast multipole method (FMM). It was originally

proposed by Greengard and Rokhlin [77] for efficient evaluation of

the potential and force fields in N-body simulations. The FMM is

based on truncated potential expansions [78] and is principally an

approximate method, contrary to FFT-based acceleration. A careful

tuning of approximation parameters is important to reach both

satisfactory accuracy and low computational complexity. The FMM

can be single- or multilevel; the latter is based on hierarchical

grouping of particles [79]. The FMM was widely applied in

connection with surface-discretization methods [80, 81]. For them

the single- and multi-level FMM has complexity of O (N 1.5) [80] and

O (N ln2(N )) [82], respectively.

The FMM naturally fits the DDA, since the matrix-vector

multiplication is actually computing the total field on each single

dipole due to all other dipoles [79]. And it was actually implemented
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in the framework of the DDA [56, 78, 83]. However, rigorous error

analysis (required for the rigorous complexity estimate) is still

lacking for the FMM–DDA. Moreover, the multi-level FMM has poor

parallel performance, making single-level one more applicable to

supercomputers with a large number of cores [80]. Hence, for such

hardware performance of the FMM is generally much worse than

that of FFT-based methods. Since the FMM is not implemented in

any production DDA code, it is not discussed further.

2.4.2.3 Orientation averaging and repeated calculations

In many plasmonic applications one is interested in optical

properties of an ensemble of randomly oriented particles. When the

concentration of particles is small, multiple scattering is negligible

and the optical properties are obtained by averaging single-particle

scattering over different particle orientations. Orientation averaging

can be described as the integral over the Euler’s orientation angles

(including a probability distribution function if necessary), which

is brought down to a sum by appropriate quadrature. The problem

therefore consists in calculation of some scattering property for a set

of different orientations of the same particle. The easiest way is to

calculate it by solving sequentially and independently each problem

from the set. However, the large size of this set calls for some means

of reducing the calculations.

Singham et al. [84] noted that the set of problems described

above is physically equivalent to a fixed orientation of the particle

and different incident and scattering directions. Fixed scatterer

geometry has two immediate advantages. First, Ã is kept constant

(although minor variation is possible, see Sec. 2.4.3.2) and need to be

computed only once. Second, any scattering quantity (for any angle)

is quickly obtained after the linear system is solved for two incident

polarizations. Hence, integration over one Euler angle is relatively

fast. This finalizes the current state of the art implemented in the

production DDA codes. In the following several interesting ideas

proposed in the literature are explained, which have not (yet) found

a widespread use.

If inverse or LU decomposition of Ã is available, then scattering

problems for each different orientation can be solved in O (N 2)
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operations [84, 85]. Moreover, analytical averaging over orientations

can be performed in O (N 2) operations [84, 86, 87], similarly to

the T-matrix method [4]. However, this is still slower than FFT-

accelerated iterative methods, when Niter 
 N (which is usually the

case).

Another option is to first compute the T-matrix of the particle.

The T-matrix formalism is based on the multipole expansion

truncated at some order n0, which usually equals to several times

size parameter x [88, 89]. The order (number of rows) of the T-

matrix equals 2n0 (n0 + 2). The straightforward way to evaluate

the T-matrix based on the DDA is to solve for every incident

spherical wave (i.e. for each row of the T-matrix) independently

[90] with possible optimization for the repeated calculation

discussed above. Using iterative techniques, computation time is

n2
0 N
[

O (Niter ln(N )) + O (n2
0)
]
, where the first term in the sum is

the time for solving the linear system, and the second one is for

the computation of the T-matrix components themselves. A new

method to obtain the T-matrix from the DDA interaction matrix

was proposed by Mackowski [90], requiring two summations with

computational time O (n2
0 N ln(N )) and O (n4

0 N ). For particles larger

than λ O (n4
0 N ) usually dominates the computational time of both

straightforward and Mackowski’s methods, thus decreasing the

difference between the two. However, for metallic nanoparticles

n0 can be rather small, while Niter – up to few thousands (see

Sec. 2.4.2.1). In this case Mackowski’s method to calculate T-matrix

will be much faster than the straightforward one, and may prove

a faster alternative to calculate orientation-averaged properties.

Another class of possible improvements is optimizing multiple

runs of iterative solvers with different ỹ. First option is a “heavy”

preconditioner, e.g. incomplete factorization preconditioner [53],

which has large initialization cost (computed only once) but better

convergence rate. Second option is block-iterative methods (see, e.g.

[91–93]), which solve the linear system for many ỹ simultaneously.

The main limitation of the latter is significantly larger memory

requirements. However, none of these two options have even been

tested in the DDA. Okada et al. [94] proposed the third option –

interpolating the internal field from already simulated orientations

to obtain a “good guess” for the initial vector in the simulation
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for another orientation. Tests showed that Niter can be decreased

several times for a dense grid or orientation angles.

Additionally to performing the DDA simulations for a number

of orientations the final accuracy is also affected by the used

quadrature (except, when analytical averaging is performed). In

the production DDA codes the Simpson rule [95] and the Romberg

integration [65] are used, while Okada [96] recently advocated the

use of quasi-Monte-Carlo techniques. It is not clear what the best

method is, and the answer may depend on a particular problem.

Finally, there are many plasmonic applications requiring DDA

simulations for multiple particle sizes (averaging over size dis-

tribution) or wavelengths (calculation of a spectrum). Matrix Ã
depends both on size divided by λ, e.g. x , and ñ. In plasmonics ñ
usually strongly depends on λ. Therefore, simulations for different

sizes (or λ) are largely independent. The only known general

way to optimize calculations is reusing initial fields from previous

simulations to compute a good guess for the iterative solver [97],

similarly as was noted above for orientation averaging. However,

other improvements are possible in a special case of particles

much smaller than the wavelength. Then the interaction matrix for

Eq. (2.14) is size-invariant and its part, matrix G̃
0
, is real symmetric.

This makes size averaging much easier and simplifies spectrum

calculation. First, spectral representation formalism (see [98] for

an overview) allows one to reduce the calculation of the whole

spectrum to diagonalization of G̃
0
. Second, multiple runs of the

iterative solver varying only the refractive index can be significantly

optimized using shift-invariance properties of the CG-type iterative

methods [99]. Unfortunately, it is hard to specify a size limit for the

underlying assumptions to be valid. Usually, size is required to be

at least 10 times smaller than all used values [100] of λ. But even

stricter requirements may apply for large |ñ|.

2.4.3 Existing Formulations

2.4.3.1 Interaction term

Three formulations for the interaction term are known. The simplest

is the interaction of point dipoles:



April 17, 2013 13:13 PSP Book - 9in x 6in molplasmonic

Theory of the DDA 105

G̃
0

i j = G̃
0
(ri , r j ) . (2.45)

The integrated Green’s tensor (IGT, [101]) is based on a direct

numerical integration of Eq. (2.17). This integration takes a lot of

time; however, it can be reduced by performing exact calculation

only for nearby dipoles, when the difference between Eq. (2.17) and

Eq. (2.45) is the largest [65].

The filtered coupled dipoles (FCD, [102]) is based on the sampling

theory applied to evaluation of the integrals in Eq. (2.5). The electric

field and the susceptibility are sampled:

χ̃(r′)Ẽ(r′) ≈ Vd

∑
i

hr (r′ − ri )χ̃(ri )Ẽ(ri ), (2.46)

where hr is the impulse response function of an antialiasing filter:

hr (R) = sin (kF R) − kF R cos (kF R)

2π2 R3
, (2.47)

and kF = π/d is the wavenumber corresponding to the grid.

Equation (2.5) is then transformed to Eq. (2.14) with the so-called

filtered free-space Green’s tensor, defined as:

GF
i j =

∫
R3/V0

d3r′G̃0
(ri , r′)hr (r′ − r j )

= I

(
k2gF (R) + g

′
F (R)

R
+ 4π

3
hr (R)

)

+RR
R2

(
g

′′
F (R) − g

′
F (R)

R

)
, (2.48)

where the symbol ′ indicates the derivative; the integral is evaluated

analytically [102], taking V0 to be infinitesimally small, and gF is the

filtered scalar Green’s function:

gF (R) = 1

π R

{
sin(kR) [π i + Ci ((kF − k)R) − Ci ((kF + k)R)]

+ cos(kR) [Si ((kF + k)R) + Si ((kF − k)R)]
}
. (2.49)

To apply this formulation kF must be larger than k, i.e. kd < π . But

use of the DDA with larger dipoles has little sense anyway. Additional

computational time for using the FCD is comparable to a single

iteration of the iterative solver, which is negligible in most cases.
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The default G̃
0

i j , given by Eq. (2.45), is used in almost all

applications, while others are considered in only a few papers.

However, the effect due to different G̃
0

i j can be much larger than

that due to different ˜̧ i , because the whole matrix Ã instead of

only its diagonal is affected. For instance, the IGT is known to

perform very good for small scatterers with large and almost real

refractive indices [101], while the FCD significantly improves the

accuracy of the DDA for large |ñ| [67, 98, 102, 103] (see also

Sec. 2.6). Moreover, both the IGT and the FCD may decrease Niter

several times in certain cases [98, 101, 103], cutting down the

simulation time proportionally. For the FCD this was explained by

closer resemblance between spectra of the interaction matrix and

the integral scattering operator (see Sec. 2.4.2.1) than that when

using CM [98]. It was also proved theoretically that convergence of

the IGT with refining discretization for shapes exactly described by

a set of cubes is quadratic in kd, contrary to linear convergence of all

other DDA formulations except the FCD [104].

Fortunately, all three formulations for the interaction term are

implemented in the production codes. So it is recommended to

try different options for a particular application, especially when

dealing with plasmonic refractive indices.

2.4.3.2 Polarizability prescription

The simplest formula for polarizability (CM) was defined above by

Eq. (2.23) and used in the original DDA formulation [54]. All others

are equivalent to using non-zero M̃i in Eq. (2.22). The radiative
reaction correction is based on the radiative damping (see Sec. 1.6.4)

of a finite dipole [105]:

M̃RR = 2

3
i (kd)3 I . (2.50)

It was proposed [48] to satisfy the optical theorem, in particular,

to make C abs defined by Eq. (2.33) exactly equal zero for purely real

ñ. RR is also included in many other formulae discussed below.

Two other formulations are based on approximate evaluation of

Eq. (2.16) replacing the cubical dipole by an equi-volume sphere

with radius ad = d (3/4π)1/3. Obtained result, advocated by
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Lakhtakia and others [106, 107], is denoted as LAK,

M̃LAK = 8π

3
I [(1 − ikad) exp (ikad) − 1] , (2.51)

while its series expansion up to the third order of kd was proposed

under the name digitized Green’s function (DGF) [45, 106]:

M̃DGF = I

(
bDGF

1 (kd)2 + 2

3
i (kd)3

)
, (2.52)

bDGF
1 = (4π/3)1/3 ≈ 1.6111992 . (2.53)

Peltoniemi [108] improved the LAK formulation by relaxing the

assumption in Eq. (2.15). Instead of assuming Ẽ(r) constant inside a

dipole it is expanded in Taylor series around the dipole center up to

the third order of kr . Then second derivative of Ẽ(r) is expressed in

terms of Ẽ itself with help of the Maxwell equations, leading to:

M̃PEL = I

[
bDGF

1

(
1 + 1

10
ñ2

)
(kd)2 + 2

3
i (kd)3

]
, (2.54)

where the assumption of a spherical dipole is also used and ñ is the

refractive index of the point considered.

Another class of polarizability formulations is based not on the

integral equation in Eq. (2.5) but on the notion of a set of point

dipoles. Draine and Goodman [100] found an optimal O ((kd)2)

correction to the CM polarizability in the sense that an infinite lattice

of point dipoles with such polarizability would lead to the same

propagation of a plane-wave as in a homogeneous medium with

a given refractive index. This polarizability was called the lattice
dispersion relation (LDR):

M̃LDR = I

[(
bLDR

1 + bLDR
2 ñ2 + bLDR

3 ñ2 S
)

(kd)2 + 2

3
i (kd)3

]
, (2.55)

bLDR
1 ≈ 1.8915316, bLDR

2 ≈ −0.1648469,

bLDR
3 ≈ 1.7700004, (2.56)

S =
∑

μ=x,y,z

(
êinc
μ k̂inc

μ

)2
. (2.57)

The LDR prescription can be averaged over all possible incident

polarizations [100], resulting in:

S = 1

2

(
1 −

∑
μ=x,y,z

(
k̂inc
μ

)4

)
. (2.58)
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Later a minor flaw in the LDR derivation was found and corrected

[109]. This corrected LDR (CLDR) is independent on the incident

polarization but leads to a diagonal polarizability tensor instead of

scalar:

M̃CLDR = δμν
[(

bLDR
1 + bLDR

2 ñ2 + bLDR
3 ñ2

(
k̂inc
μ

)2
)

(kd)2 + 2

3
i (kd)3

]
,

(2.59)

where δμν is the Kronecker symbol.

By construction the LDR is expected to be especially inaccurate

near the particle surface. To alleviate this problem Rahmani,

Chaumet, and Bryant [110] (RCB) proposed to determine polariz-

ability based on the solution of the electrostatic problem for the

same scatterer, described by a tensor D̃(r):

Ẽ(r) = D̃(r)Ẽinc . (2.60)

Such simple relation is possible only in the static limit, when Ẽinc

does not depend on r. Using Eq. (2.21) and Eq. (2.60) in Eq. (2.19),

the latter is exactly satisfied for any Ẽinc if and only if the following

polarizability is used

˜̧ RCB
i = Vdχ̃i D̃i

⎛⎝I + Vd

∑
j �=i

Gst
i j χ̃ j D̃ j

⎞⎠−1

, (2.61)

where D̃i = D̃(ri ) and Gst
i j = Gst

i j (ri , r j ). Although the RCB

polarizability looks completely different from the CM, they differ

significantly only for dipoles closer than 2d to the interface [111].

Any M̃-based polarizability corrections can be further applied to

the RCB, replacing ˜̧ CM
i by ˜̧ RCB

i in Eq. (2.22). For instance, the RR

correction was used in the original manuscript [110] and Collinge

and Draine [111] applied the CLDR correction leading to the surface-
corrected LDR.

The RCB has been applied only to simple shapes so far, for which

D̃ is constant (independent of r): spheres, ellipsoids, infinite slabs

and cylinders. Application to other shapes is connected with two

problems. First, it requires preliminary solution of the electrostatic

problem for the same shape, which is not trivial. Second, when D̃
is not constant the RCB polarizability is generally not symmetric,

which is physically impossible in the static case [112]. However, it
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is not clear whether this apparent contradiction affects the accuracy

of the final results.

Two other polarizability formulations are consequences of

formulations for the interaction term (see Sec. 2.4.3.1). In the

framework of the FCD [102], the filtered Green’s tensor (see

Eq. (2.48)) does not have a singularity for zero argument anymore.

This can be used for direct evaluation of polarizability [98]:

M̃FCD = Vd lim
R→0

GF (R) = 4

3
I (kd)2 + 2

3

(
i + 1

π
ln
π − kd
π + kd

)
I (kd)3 .

(2.62)

In the framework of the IGT Eq. (2.16) is evaluated numerically

to a high accuracy using a Weyl expansion of the Green’s tensor

[101]. However, it is much easier to obtain the series expansion of

this result up to the third order of kd. Proceeding similar to the

derivation of the DGF but keeping the cubical integration volume one

can obtain:

M̃IGT = I

(
bIGT

1 (kd)2 + 2

3
i (kd)3

)
, (2.63)

bIGT
1 = 4

3

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz√
x2 + y2 + z2

= 4

3

[
ln
(

5 + 3
√

3
)

− ln(2)

2
− π

4

]
≈ 1.586718 . (2.64)

Finally, Dungey and Bohren [113], using results by Doyle [114],

proposed to use the electric dipole coefficient a1 = −B1 (see

Sec. 1.6.5) from the Mie theory computed for the inscribed sphere

with diameter d and electric permittivity ε̃s determined by the

Maxwell-Garnett effective medium theory [46]:

π

6

ε̃s − 1

ε̃s + 2
= ε̃ − 1

ε̃ + 2
, (2.65)

where π/6 is the volume filling factor. Other effective medium

theories may also be used [60]. The dipole polarizability is defined

as [114]

˜̧ M ie = i
3

2k3
a1I , (2.66)

which recovers the usual polarizability of the sphere (see Sec. 1.6.5).

This formulation is denoted as the a1-term method [115]. It is
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expected to be suitable for simulation of clusters of small spheres,

where each of them can be modeled by a single dipole.

A large part of the described polarizability prescriptions is

implemented in the production codes, namely: CM, RR, LDR, CLDR,

DGF, LAK, FCD, IGT. In plasmonic applications dipoles are usually

very small, i.e. kd 
 1. This implies that O ((kd)2) differences

between the formulations are minor, making the choice of the best

prescription not that important. There is, however, an exception.

Two prescriptions from the above list, LDR and CLDR, contain terms

proportional (ñkd)2, which may be significant for not-very-small

particles and large ñ typical in the near-IR. Although LDR is still the

most widely used polarizability prescription, its applicability to such

ñ is very debatable, especially for particles larger than λ [98].

2.4.3.3 Calculating measurable quantities

The most widely used way to calculate measurable quantities is

using Eqs. 2.26, 2.28, 2.30, 2.31, and 2.33. The major advantage of

these equations is that they are exact for the set of point dipoles.

Hence, the optical theorem (a consequence of energy conservation),

expressed, e.g. as,

C ext = C abs + C sca , (2.67)

is a direct implication of the main DDA equations (e.g. Eq. (2.19)).

Therefore, the inaccuracy of Eq. (2.67) is comparable with the final

residual of the iterative solver (assuming Eq. (2.30) is evaluated to a

high accuracy), which is usually much smaller than the error of the

DDA itself (due to other approximations). In particular, Eq. (2.67)

can be used for an accurate evaluation of C sca without a laborious

integration implied by Eq. (2.30), even when it is up to 100 times

smaller than both C ext and C abs .

Other expressions for C abs have also been proposed. Originally,

Purcell and Pennypacker [54] used Eq. (2.33) without the second

term, but that works satisfactory only in combination with the CM

polarizability. Otherwise, physical artifacts occur, such as non-zero

C abs for purely real ñ. A more advanced formula was proposed [101]

based on radiation correction of a finite dipole instead of a point
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dipole:

C abs = 4πk
∑

i

Im
[
P̃i · Ẽ∗

i

]
, (2.68)

which is also a direct approximation to Eq. (2.32). There is no

difference between Eq. (2.33) and Eq. (2.68) for the CM, the RR,

and the FCD polarizability formulations and also for real refractive

indices [40]. Otherwise, the optical theorem is no more exactly

satisfied. To alleviate this problem a corresponding correction to

C ext was proposed [65]. However, it is not yet clear whether using

Eq. (2.68) improves the accuracy of the DDA.

Another possibility is to improve Eq. (2.26) using advanced

formulations for the interaction term (Sec. 2.4.3.1). In particular, the

following expressions naturally follow from the IGT and the FCD:

G̃
IGT

i (r) = 1

Vd

∫
Vi

d3r′G̃0
(ri , r′) , (2.69)

G̃
F
i (r) = GF (r, ri ) . (2.70)

These expressions may improve the accuracy of the near-field

calculation but, unfortunately, this has never been tested. The

production codes allow one to calculate the near-field only using the

simplest Eq. (2.26).

The importance of choosing the right expression for G̃i (r)

diminishes with increasing r . In particular, it is easy to show that:

G̃
IGT

i (r)
r→∞−→ η(kd, r̂)G̃

0
(r, ri ) (2.71)

G̃
F
i (r)

r→∞−→ G̃
0
(r, ri ) (2.72)

where

η
(

x, r̂
) =

∏
μ=x,y,z

sin
(
r̂μx/2

)
r̂μx/2

= 1 − (1/24) x2 + O (x4) . (2.73)

In other words, the FCD does not change the expression for F̃(r̂)

given by Eq. (2.28), while the IGT adds the multiplicative factor

η
(

kd, r̂
)

, which only slightly differs from unity.

Although all of the described improvements, except those to

calculate the near-field, are implemented in the production codes,

the default one seems satisfactory. However, further research is

required to evaluate possible virtues of the IGT.
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2.4.3.4 Decreasing shape errors

The above discussion of different DDA formulations implicitly

assumed that particle shape can be exactly described by a set of

cubes. Hence, all errors were due to the discretization of the integral

equation and related simplifications. In this section so-called shape

errors [68] are discussed, which are caused by violation of the

above assumption by the real particle shape. First, it is important

to note that none of the existing improvements is implemented

in the production codes, partly because of the existing internal

data structure capable of handling only several different values

for polarizabilities of all dipoles [65]. Hence, the main goal of this

section is to put forward promising ideas for further development.

A standard way to improve description of the particle shape in

numerical solution of integral equations is adaptive discretization,

using smaller dipoles near the particle surface. Application of this

idea to the DDA is discussed in Ref. [40], but it is incompatible with

the FFT acceleration (Sec. 2.4.2.2). Therefore, the only practically

viable option is to keep the regular grid of cubical dipoles, but adjust

the properties of the boundary dipoles.

Evans and Stephens [50] proposed to modify the susceptibility of

the boundary dipole using the Lorentz-Lorenz mixing rule:

χ̃ e
i

4πχ̃ e
i + 3

= f
χ̃i

4πχ̃i + 3
, (2.74)

where the interface between the particle and vacuum is considered,

χ̃ e
i is the effective susceptibility, and f is the volume fraction of the

subvolume actually occupied by scatterer.

A more advanced averaging, called the weighted discretization
(WD), was proposed by Piller [116]. It modifies both the suscep-

tibility and the self-term of the boundary dipoles. The particle

surface, crossing the subvolume Vi , is assumed linear and divides the

subvolume into two parts: the principal volume V p
i that contains the

center and a secondary volume V s
i with susceptibilities χ̃

p
i , χ̃ s

i and

electric fields Ẽp
i ≡ Ẽi , Ẽs

i , respectively. Electric fields are considered

constant inside each part and related to each other via a boundary

condition tensor T̃i :

Ẽs
i = T̃i Ẽi . (2.75)
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Then the total polarization of the subvolume can be evaluated as

follows:

P̃i =
∫

Vi

d3r′χ̃(r′)Ẽ(r′) = V p
i χ̃

p
i Ẽp

i + V s
i χ̃

s
i Ẽs

i = Vd ffl̃
e
i Ẽi , (2.76)

with an effective (averaged) susceptibility:

ffl̃e
i = (V p

i χ̃
p

i I + V s
i χ̃

s
i T̃i
)
/Vd . (2.77)

The susceptibility of the boundary subvolume is replaced by an

effective one. The effective self-term is evaluated directly starting

from Eq. (2.7), considering χ̃ and Ẽ constant inside each part:

M̃
e
i ffl̃

e
i =

∫
V p

i

d3r′
(
G̃

0
(ri , r′) − Gst(ri , r′)

)
χ̃

p
i

+
∫
V s

i

d3r′
(
G̃

0
(ri , r′) − Gst(ri , r′)

)
χ̃ s

i T̃i . (2.78)

Piller [116] evaluated the integrals in Eq. (2.78) numerically.

The polarizability is obtained from Eq. (2.22) using ffl̃e
i and M̃

e
i ffl̃

e
i ,

while Eq. (2.19) remains unchanged. Hence, the WD does not modify

the general numerical scheme. A significant improvement of DDA

accuracy due to the WD was shown both by theoretical analysis

[104] and in sample simulations [103, 116].

Two other improvements are not aimed exclusively at shape

errors, but they affect only dipoles close to the boundary. The first

one is the RCB formulation discussed in Sec. 2.4.3.2. Second one is

the spectral filtering of χ̃ that was proposed in combination with

the FCD [102] to smooth the change of χ̃ at the particle boundary by

removing high-frequency components.

2.5 Practical Aspects of DDA Simulations

2.5.1 General Applicability

The principal advantage of the DDA is that it is completely flexible

regarding the geometry of the scatterer, being limited only by the

need to use the dipole size d small compared to both any structural
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length in the scatterer and λ. For particles with size comparable to

or larger than λ the following rule of thumb is commonly used [40]:

d = λ/10 |ñ| . (2.79)

It implies that the number of dipoles N increase with both size and

ñ. The expected accuracy of cross sections is then several percents,

if ñ belongs to the well-tested range, approximately described as

|ñ − 1| < 2. (2.80)

For larger ñ the accuracy of the simulation with default dipole

size deteriorates, and smaller, hence more dipoles must be used

to improve it. However, there is no strict limitation on ñ –

accurate results can be obtained for a wide range of ñ, given

enough computational resources. In this respect state-of-the-art

DDA formulations (Sec. 2.4.3) can be of great help.

For particles smaller than λ, e.g. nanoparticles, Eq. (2.79) is

definitely not relevant. In this case the main requirement for d is

that it should be small enough to resolve fine details of particle

shape. For instance, for a compact shape (like sphere or cube)

it is recommended to use at least 10 dipoles along the smallest

dimension, no matter how small the particle is. Therefore, for

nanoparticles N is almost independent of size. However, N does

depend on ñ, which is critical due to the wide range of ñ used in

plasmonic applications. In more details these issues are discussed in

Sec. 2.6.

2.5.2 System Requirements

The major price paid for versatility of the DDA is its large

computational costs, even for simple scatterers. The most important

factor is the number of dipoles N , which determines both memory

requirements M and computational time of one iteration titer .

More precisely, the relevant quantity is the number of dipoles

composing the enclosing rectangular box (see Sec. 2.4.2.2), which

is typically one-two times larger than N (for compact particles).

System requirements largely vary depending on the particular DDA

code, arithmetic precision, and iterative solver. The following are the
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guiding values:

M ≈ 1000N bytes, (2.81)

titer ≈ 3 × 10−7 N ln(N ) s. (2.82)

The latter is an estimate when using a single core of a modern

processor. More accurate estimates can be found in the manuals of

particular codes (see Sec. 2.5.4).

Required memory is the major factor limiting N when a DDA

simulation is run on a single PC. This limitation can be alleviated by

parallelization of a single simulation among a cluster of computers,

which is implemented in some of the DDA codes. Corresponding

parallel efficiency is generally close to unity [65, 117], which means

that M is effectively distributed among several computers and titer

is decreased proportionally to the total number of processor cores.

However, for efficient parallelization the number of cores must not

be greater than the maximum number of dipoles along a coordinate

axis.

Total time t of DDA simulation can be decomposed into the

following parts:

t ≈ tinit + Nor
(

Niter titer + tquan
)
, (2.83)

where tinit and tquan are time of initialization and calculation of

measurable quantities, respectively, and Nor is the number of

distinct particle orientations (see Sec. 2.4.2.3). Generally, tinit is

comparable to titer and tquan is even smaller. However, the latter is

proportional to the number of considered scattering angles or near-

field probe points and, thus, may become large in certain conditions.

Existing theory concerning Niter is discussed in Sec. 2.4.2.1, here we

only note that it is also sensitive to the used arithmetic precision.

Using single instead of double precision halves M , but increases

round-off errors, which in turn accumulate and increase Niter ,

especially when the latter is already large.

2.5.3 Free Parameters

Many parameters of the DDA codes are directly determined by a

scattering problem to be simulated. However, there are also some

free parameters that can be tuned. In the following they are listed in

the order of decreasing importance:



April 17, 2013 13:13 PSP Book - 9in x 6in molplasmonic

116 Computational Approaches for Plasmonics

• the level of discretization (i.e. size or number of dipoles),

• DDA formulation,

• the number of orientations for orientation averaging,

• iterative solver and convergence threshold,

• the volume correction.

The level of discretization is a result of compromise between

accuracy and required computational resources. In many cases the

required accuracy is specified a priori, but finding an appropriate d
(or N ) is not an easy task. Existing benchmark studies are discussed

in Sec. 2.6, but their coverage of the field of plasmonics is relatively

poor. Therefore, whenever one plans to run more that a single DDA

simulation for a class of similar particles, it is recommended first to

perform an accuracy study. For that one should choose a single test

particle and perform DDA simulations with different d around the

values typically used for similar simulations in the literature. The

estimate of d required for a particular accuracy can be obtained from

a variation of results with decreasing d. Moreover, the estimation can

be made much more rigorous by using an extrapolation technique,

as proposed by Yurkin et al. [68] and applied in Ref. [67, 98, 118]

(see also Sec. 2.6). Seeking a careful compromise is important due to

a steep dependence of N (and t) on required accuracy. In particular,

two-fold decrease of simulation error usually requires eight-fold

increase of N [68, 104].

Different DDA formulations are discussed in Sec. 2.4.3 together

with some practical recommendations. The number of orientations

required for accurate orientation-averaged results is also hard to

estimate a priori, since this issue is rarely discussed in details [96,

119]. However, contrary to the DDA simulation itself, it is relatively

easy to estimate the accuracy of the orientation averaging during the

process and increase the number of orientations, if needed. In other

words, orientation averaging can be performed in semi-automatic

adaptive regime [65, 96]. Moreover, the dependence of t on accuracy

of orientation averaging is not that steep as discussed above for DDA

simulation for fixed orientation. Therefore, it may be acceptable to

use “large enough” number of orientations.

Different iterative solvers are discussed in Sec. 2.4.2.1 and there

are several of them, which work fine in most cases. The convergence
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threshold is usually chosen small enough to introduce negligible

errors, because in this case the extra accuracy is especially cheap.

Convergence of the iterative solver is usually linear in logarithmic

scale, so, e.g. ten-fold increase of the typical threshold value of 10−5

decreases t by only about 20%. Nevertheless, such acceleration can

be useful for very long simulations.

Discretization of a particle in the framework of the DDA is usually

performed by testing the dipole centers for belonging to the particle

volume. Then the total volume of the set of dipoles differs from

volume of the particle. The volume correction, implemented and

used by default in some DDA codes, changes the size of each dipole

(scales the whole set of dipoles) to remove this difference. This

is believed to increase the accuracy of DDA, especially for small

scatterers, although the effect is not always beneficial [44]. However,

in plasmonic applications N is usually large (to get satisfactory

accuracy), which decrease the effect of volume correction.

To conclude, although DDA is one of the most conceptually simple

and easy-to-use methods to simulate light scattering, performing

accurate and fast DDA simulations is still, to some extent, an art. It

requires one to consider open questions that still remain, because

the plasmonics is a relatively new application domain of the DDA.

Hence, to perform reliable and efficient DDA simulations one should

take a critical attitude towards results and be ready to experiment

with free parameters, instead of hoping for “black box” to produce

correct results by itself. Although the DDA codes usually have some

built-in empirics to set up the free parameters without any input

from user, these empirics may be completely inappropriate in some

cases. Finally, in the art of DDA simulations an advice from more

experienced users can be invaluable. Apart from traditional means,

such advice can also be obtained through an internet discussion

group [120].

2.5.4 Available Codes

To our knowledge, there exist four freely-available DDA codes:

DDSCAT [44], ADDA [65], OpenDDA [117], and DDA-SI toolbox [27].

More DDA codes exist, and some of them are discussed in Ref.

[119], but these are not freely available to the community. OpenDDA
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and DDA-SI toolbox have been released only recently and not yet

well-tested by the community, but they do have attractive features.

OpenDDA contains highly-optimized computational kernel which

can run efficiently both on multicore processors using OpenMP

[121] and on computer clusters using MPI (message passing

interface [122]). This is probably the fastest DDA code when using

the standard formulation of the DDA. DDA-SI toolbox can rigorously

handle particles near the surface (see Sec. 2.2.3) but, unfortunately,

do not employ FFT acceleration.

In the following two mature codes are compared, based on their

current versions: DDSCAT 7.2 [123] and ADDA 1.1 [124]. However,

one should refer to the corresponding manuals [95, 125] for more

details. Both codes are fast, accurate and feature-rich, so only the

differences are pointed out.

• DDA formulations. DDSCAT can rigorously handle 1D and

2D periodic scatterers (see Sec. 2.2.2). ADDA implements

state-of-the-art DDA formulations, in particular, the IGT and

the FCD (see Sec. 2.4.3.1).

• Portability. DDSCAT is written in Fortran 90, while ADDA

is written in C99. Both are highly portable and can be

compiled on a wide variety of platforms. Additionally

DDSCAT developers provide compiled binaries for 32-bit

Windows, while ADDA – both for 32-bit and 64-bit Windows.

• Use of modern hardware. DDSCAT uses OpenMP to

effectively run on multi-core processors and can use MPI

to parallelize orientation averaging. ADDA parallelizes a

single DDA simulation using MPI. Hence, huge N (very

large particles or very fine discretization) can be used

when running on a large computer cluster. However, for

a single multi-core processor the performance of MPI is

generally worse than that of OpenMP. Also ADDA features

GPU-acceleration, which potentially allows about 10 times

acceleration using modern graphics cards.

• Speed. The speed of the codes on the same basic hardware

can also differ due to differences in algorithms and opti-

mizations. In 2007 Penttila et al. [119] compared, among

other codes, DDSCAT 6.1 and ADDA 0.7a. ADDA was from
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1.2 to 4 times faster than DDSCAT for simulation of light

scattering by cubes and spheroids in fixed orientation.

However, performance of both codes has been significantly

improved since that comparison In particular, DDSCAT

currently includes a fast FFT-based routine to calculate near-

field [126].

• Orientation averaging. DDSCAT employs the Simpson rule

as a quadrature for orientation averaging, while ADDA – the

Romberg integration. The latter is potentially more accurate

and can be used in adaptive regime. However it requires

more careful consideration to be used efficiently, and is less

flexible in the choice of number of orientations [119].

• Spectrum calculation. DDSCAT completely automates cal-

culations for a spectrum of wavelengths in a convenient

manner. ADDA can perform such automatic calculations only

with the help of additional scripts.

• User interface. DDSCAT accepts most of the simulation

parameters through a special file. ADDA accepts such para-

meters through a command line, which is more convenient

for scripted parallel runs [119]. However, both codes also

use large input files, e.g. to describe an arbitrary particle.

Also ADDA features a built-in help system, which should be

especially useful for new users.

• History and development process. First version of

DDSCAT was publicly released in 1993; hence, it is an

extremely well-tested and reliable code. In particular, it was

used in several hundreds of journal papers. Development of

ADDA started in 1990, but the first public release was in

2006. It is also well-tested, exemplified by its use in more

than 80 journal papers. Currently ADDA features an open

development process with several developers from different

countries.

2.6 Accuracy of the DDA

First, it should be stressed that although the name of DDA contains

“approximation” due to historical reasons, it is a numerically exact
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method in the sense that accuracy can be made however good

given enough computational resources. The only limitation on the

achievable accuracy is enforced by the machine precision. The

proof of DDA numerical exactness was provided by the rigorous

convergence analysis [104] based on the derivation of the DDA

from the Maxwell’s equations using no physical approximations (see

Sec. 2.4.1). It was also confirmed by many numerical convergence

studies, see, e.g. Refs. [72, 104], also for very large |ñ| [67, 98, 127].

Accuracy of the DDA in general is discussed in review [40] as well

as in more recent benchmark study [72]. However, they are mostly

limited to the moderate range of ñ (see Eq. (2.80)), for which the

rule-of-thumb is commonly used (see Sec. 2.5.1). Use of the DDA

in plasmonics is mainly application-driven with, unfortunately, little

attention paid to error analysis of the DDA itself. Moreover, even in

the recent plasmonic papers the DDA is sometimes (e.g. Ref. [12])

wrongly regarded as an approximate method (see the discussion

above). This misconception may be caused by two reasons. First,

the DDA accuracy for plasmonic ñ is indeed much worse than

for moderate ñ in the sense that corresponding computational

resources needed to achieve the same accuracy are larger. Hence,

for some plasmonic applications good DDA accuracy cannot be

achieved on, e.g. standard desktop PC. Second, the DDA accuracy is

often judged by comparison with experiment, which is also largely

affected by uncertainties in the proper values of ñ (see Sec. 2.3)

and in experimental conditions, e.g. in particle shape [128, 129].

So in the following existing literature data on DDA accuracy for

metallic nanoparticles is reviewed with particular emphasis on gold.

However, the results for other metals are expected to be similar with

corresponding changes in λ, because of similar variation ranges of ñ
(see Section 2.4.2.1).

The accuracy of the DDA for gold nanoparticles is usually

quoted as “good enough if a large enough number of dipoles is

used”, i.e. the discussion is qualitative with no error measurements

available [130–133]. In a couple of papers DDA results are plotted

together with exact reference results in the same graph for spheres

[131] and spheroids [132]. These graphs show that errors of

extinction efficiency at particular wavelengths can be as large as

50%. Moreover, a reliable identification of small side peaks in the
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spectrum is hampered by DDA errors [131]. Similar results have

been obtained for silver nanospheres [134].

Although DDA simulations for nanoparticles mostly focus on

extinction efficiency, as this is usually measured experimentally,

several researchers have studied its constituents—absorption and

scattering efficiencies—separately [132, 135, 136]. This should

result in a better understanding of DDA errors, especially their size

dependence. Moreover, absorption efficiency is relevant to practical

applications involving optical heating of nanoparticles.

Recently a systematic error analysis of the DDA for gold

nanoparticles was performed [67]. In the following this study is

considered in details. Its important features were using a wide range

of discretizations and relatively new FCD formulation, additionally

to the standard LDR (see Sec. 2.4.3.2). The following particles were

considered: two spheres (diameters D = 10 and 100 nm), two

cubes (edge sizes D = 10 and 100 nm), and a rod (cylinder with

hemispherical caps, diameter 20 nm, total length 90 nm). The

incident light propagated along the z-axis and was polarized (E-

field) along the x-axis. Cubes were oriented with edges along the

coordinate axes, and the rod was oriented with symmetry axis along

the x-axis, emphasizing the longitudinal plasmon resonance. All

particles were considered in vacuum using the wavelength range

[0.398,0.822] μm. The latter is informative for gold, since it contains

both moderate and plasmonic ñ, see, e.g. Fig. 2.2. Values of ñ were

taken from Johnson and Christy [37] without size correction (see

Sec. 2.3).

Absorption and scattering efficiencies (Q abs , Q sca) were calcu-

lated using ADDA 0.79 varying the discretization level, characterized

by number of dipoles Nx along the x-axis. Reference results

were obtained using Mie theory [46], T-matrix method [137],

and extrapolation technique combined with the DDA [68] for the

spheres, the rod, and the cubes respectively. Some of the results [67]

for Q abs and Q sca are presented in Fig. 2.3 and Fig. 2.4, respectively.

Since the accuracy of these two quantities weakly depends on the

size [67] (see also Fig. 2.5), only results for the smaller sphere and

cube are shown.

The immediate conclusion is that errors can be huge (100%

and more) when using moderate Nx . On the other hand, such a
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Figure 2.3 Relative errors of absorption efficiency Q abs computed using the

FCD and LDR formulations of the DDA, varying the number of dipoles, for

gold (a) 10-nm sphere, (b) 10-nm cube, and (c) 20×90-nm rod.

reasonable task as obtaining Q abs of a sphere (or a rod) in the near-

IR with at least 10% accuracy requires Nx up to 256 (N ∼ 107),

which is still very challenging for a desktop PC, considering large

Niter (see Fig. 2.2) and potential need for orientational averaging.

Fortunately, the errors for the cube are an order of magnitude

smaller than for the sphere and the rod for the same dipole size.
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Figure 2.4 Same as Fig. 2.3 but for scattering efficiency Q sca .

Supposedly, the situation is similar for other shapes that can be

exactly described by a set of cubical dipoles due to absence of shape

errors. Therefore, for other shapes the accuracy of DDA is expected

to be significantly improved by the WD (see Sec. 2.4.3.4) or similar

ideas, which calls for their implementation in the production DDA

codes.

The relative errors of Q sca are about 10 times less than that

of Q abs for the spheres and the cubes, but only 2 times for the

rod. The reasons for such difference are still unclear. However, it
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Figure 2.5 Relative errors of Q ext , Q sca , and Q abs of a gold sphere computed

using the FCD formulation of the DDA as a function of sphere diameter (λ =
0.694 μm, Nx = 64).

implies that accuracy of Q ext has strong size dependence due to very

different size dependences of Q abs and Q sca , which are O (D/λ) and

O ((D/λ)4), respectively, for D < λ [46]. In other words, accuracy of

Q ext is similar to that of Q abs for smaller and to that of Q sca for larger

particles, which is illustrated in Fig. 2.5 for a specific value of λ [67].

The boundary value of D for the spheres is 50–200 nm depending

on λ [67]. Therefore, accuracy of Q ext can be unusually poor for

sufficiently small nanoparticles, as compared to earlier studies using

larger particles (e.g. 300 nm spheres, [131]).

In certain plasmonic applications the only quantity of interest

is the position and the amplitude of the spectral peak. For these

values the DDA accuracy is much better than that discussed above.

Using moderate discretization (32 dipoles per shortest particle

dimension), the position is determined with accuracy better than 10

nm and the amplitude—better than 3% (except the FCD results for

the rod [67]). Comparing the two DDA formulations, neither the FCD

nor the LDR can claim conclusive superiority in terms of accuracy,

although the FCD is generally more accurate. However, the FCD is

recommended over the LDR for general use, since this accelerates

the convergence of the iterative solver up to two times (see Fig. 2.1).



April 17, 2013 13:13 PSP Book - 9in x 6in molplasmonic

References 125

To conclude, the DDA accuracy in the field of plasmonics varies

in a wide range depending on particle, wavelength, measurable

quantity to be simulated, and parameters of the particular DDA

code. It is hard to give general recipes, because universally accurate

DDA results may be too computationally expensive. Therefore,

one should exercise caution when performing such simulations, as

discussed in Sec. 2.5.3. Moreover, the DDA accuracy is expected to

become significantly better in certain cases, if promising new DDA

formulations are implemented in the production codes.
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