УДК 541.128+622.612

О ПРИМЕНИМОСТИ ТЕОРИИ ЗЕЛЬДОВИЧА ЦЕПНОГО РАСПРОСТРАНЕНИЯ ПЛАМЕНИ ДЛЯ ГОРЕНИЯ ВОДОРОДОКИСЛОРОДНЫХ СМЕСЕЙ

О. П. Коробейничев, Т. А. Большова

Институт химической кинетики и горения СО РАН, 630090 Новосибирск, korobein@kinetics.nsc.ru

С целью проверки применимости теории Зельдовича для скорости распространения пламени с разветвленными цепными реакциями проведены расчеты на основе детального механизма и по формулам приближенной теории Зельдовича с уточненным механизмом рекомбинации атомов водорода для стехиометрических водородокислородной и водородовоздушной смесей в диапазоне давлений 47.5 Торр÷1 атм. Установлено соответствие полученных результатов. Приближенная теория Зельдовича для пламени с разветвленными цепными реакциями при определяющей роли рекомбинационных процессов приводит к разумной физической картине и позволяет получить приближенные формулы для скорости распространения пламени.

Ключевые слова: теория Зельдовича, водородокислородные пламена.

ВВЕДЕНИЕ

Тепловая теория распространения горячего пламени Зельдовича — Франк-Каменецкого [1], относящаяся к простым одностадийным реакциям, применима лишь к ограниченному числу систем. Однако в подавляющем большинстве случаев реакции в пламенах идут по цепному механизму [2]. Методы численного расчета скорости пламени на основе детальной кинетики [3] позволяют с хорошей точностью предсказывать скорость пламен с различными кинетическими механизмами. Однако это не исключает потребности в простой приближенной теории, которая давала бы аналитический вид зависимости скорости пламени от давления, температуры горения, энергии активации реакций. Такая теория может уточняться путем сопоставления с численными расчетами. С другой стороны, она необходима для интерпретации результатов численных расчетов. Я. Б. Зельдович [2] построил приближенную теорию распространения пламени для случая сильноразветвленной цепной реакции, в которой только рекомбинация радикалов приводит к выделению тепла. Он предположил, что по этому пути протекают химические реакции при горении водорода, и рассмотрел два предельных случая — сильной и слабой рекомбинации, когда отношение скорости рекомбинации к скорости разветвления соответственно значительно больше или значительно меньше единицы. В связи с большим прогрессом в области моделирования пламен на основе детальной кинетики

представляло интерес сопоставить его результаты с результатами вычисления скорости горения водорода по приближенной теории и тем самым проверить применимость последней. Полученные в рамках этой теории результаты носят полуколичественный характер, и формулы нуждаются во введении поправочных множителей (вроде $\sqrt{2}$ в [2]).

В работе [4] проведен анализ теории Зельдовича в условиях сильной рекомбинации. Для горения водорода при давлении 1 атм получено разумное согласие скорости горения, рассчитанной по теории Зельдовича с модифицированным механизмом, и результатами численного моделирования с детальной кинетикой. В настоящей работе рассмотрен другой предельный случай — слабой рекомбинации, реализующейся при горении водорода при давлении меньше 1 атм.

МЕХАНИЗМ ГОРЕНИЯ ВОДОРОДА И МЕТОД РАСЧЕТА СКОРОСТИ ГОРЕНИЯ ПО ТЕОРИИ ЗЕЛЬДОВИЧА

Горение смеси H₂—O₂ Я. Б. Зельдович представил [2] состоящим из двух элементарных стадий:

разветвление цепи

$$A + B \rightarrow 3B$$
,

$$W_1 = -\frac{dA}{dt} = k_1 AB, \quad k_1 = k \exp\left(-\frac{Q}{RT}\right),$$

и рекомбинация

$$\mathbf{B} + \mathbf{B} + \mathbf{M} \to \mathbf{C} + \mathbf{M}, \quad W_2 = \frac{dC}{dt} = rB^2M,$$

где A — концентрация O_2 , B — концентрация атомов H, C — концентрация H₂, M — ансамбль всех атомов и молекул, W_1 — скорость реакции разветвления, W_2 — скорость реакции рекомбинации, k_1 — константа скорости реакции разветвления, записанная в аррениусовском виде с предэкспоненциальным множителем k и энергией активации Q, r — константа скорости реакции рекомбинации, R — газовая постоянная, t — время, T — температура. В [2] предполагалось, что тепловой эффект первой реакции равен нулю. Рекомбинация идет с тримолекулярной константой скорости r, которая не зависит от температуры. Характерно, что рекомбинация играет не только вредную роль обрыва цепей, но и полезную — выделение тепла.

На рис. 1 приведены полученные с помощью программы PREMIX [3] и механизма [5] расчетные профили температуры и профили концентраций O₂ и H в пламени смеси H₂/O₂/Ar (26/13/61) при давлении p =47.5 Торр, сдвинутые на расстояние 0.8 см относительно начала расчета. Начало координат оказалось в точке максимума скорости реак-

ции разветвления (рис. 2). Из рис. 1 видно, что расходование О2 происходит в узкой зоне -0.5 ÷ 0.5 см, соответствующей, как показал анализ, зоне реакции разветвления, представленной на рис. 2. Из рис. 2 следует также, что скорость рекомбинации много меньше скорости разветвления, что соответствует, по терминологии Зельдовича, случаю слабой рекомбинации. Согласно расчету максимум скорости реакции разветвления находится при температуре $T_1 \approx 1100$ K, которая значительно ниже максимальной температуры пламени $T_b pprox$ 2130 К. Эти выводы: о соотношении скоростей рекомбинации и разветвления и о максимуме скорости реакции разветвления при температуре $T_1 \approx 0.5T_b$ — находятся в соответствии с предположениями Зельдовича для рассмотренного им случая слабой рекомбинации. Приведенные ниже уравнения Зельдовича были использованы для нахождения трех неизвестных величин: B_{\max} — максимальной концентрации атомов H, T₁ — температуры при максимуме скорости реакции разветвления, и — скорости пламени:

$$B_{\max} = A_0 \frac{T_b - T_1}{T_b - T_0};$$
 (1)

$$rM = k \exp\left(-\frac{Q}{RT_1}\right) \alpha_1^2 \frac{(T_b - T_0)^2 - (T_b - T_1)^2}{(T_b - T_1)^2},$$
(2)

Рис. 1. Профили температуры и концентраций O_2 и H в пламени смеси $H_2/O_2/Ar~(26/13/61)$ при p=47.5 Торр

Рис. 2. Скорости реакций разветвления (1) и рекомбинации (2) в пламени смеси $H_2/O_2/Ar$ при p = 47.5 Торр

$$\alpha_1 = \frac{RT_1^2}{Q(T_1 - T_0)};$$
$$u^2 = 4A_0 Dk \exp\left(-\frac{Q}{RT_1}\right) \alpha_1^2 \frac{T_b - T_1}{T_b - T_0}, \quad (3)$$

где A_0 — концентрация O_2 в горючей смеси, D — коэффициент диффузии атомов H, T_0 — температура пламени.

Согласно теории Зельдовича в случае слабой рекомбинации выделение тепла происходит медленно $(rM \ll k \exp(-Q/RT_b))$, основные превращения протекают при температуре T_1 . При этом $T_b - T_1 \approx T_1 - T_0$; $\exp(-Q/RT_1) \ll \exp(-Q/RT_b)$. Находя значение T_1 с использованием (2) из выражения

$$rM = gk \exp\left(-\frac{Q}{RT_1}\right),\tag{4}$$

(g — безразмерная величина меньше единицы, rM — известная величина) и подставляя его в (3), получаем скорость движения газа при температуре T_1 во фронте пламени. Значение коэффициента диффузии D также берется при температуре T_1 . Скорость пламени u (относительно свежей смеси) определяется по выражению

$$u = u(T_1)\frac{T_0}{T_1}.$$
 (5)

По приближенной формуле (1) вычислена максимальная молярная концентрация атомов H в случае горения смеси $H_2/O_2/Ar (26/13/61)$ (см. рис. 1) при $A_0 = 0.13$, $T_0 = 370$ K: $B_{max} \approx 0.09$, что близко к максимальной молярной концентрации, полученной методом моделирования, ≈ 0.078 .

Однако предположение Зельдовича о том, что рекомбинация атомов Н в рассматриваемых случаях идет по реакции квадратичного обрыва, не подтвердилось. Моделирование на основе детальной кинетики показало, что в качестве реакции рекомбинации атомов водорода необходимо рассматривать реакцию

$$\mathbf{H} + \mathbf{O}_2 + \mathbf{M} = \mathbf{H}\mathbf{O}_2 + \mathbf{M},\tag{R1}$$

которая, как показали результаты моделирования при атмосферном давлении в смеси, близкой к стехиометрической, идет со значительно большей скоростью, чем реакция квадратичного обрыва. Однако разработанный Зельдовичем метод расчета скорости пламени и полученные с его помощью формулы могут быть с успехом применены для более правильного модернизированного механизма, в котором рекомбинация протекает по реакции (R1).

Упрощенное выражение для скоропламени уравнением сти представлено $u^2 = hA_0DrM$, где h — безразмерный параметр, слабо (логарифмически) зависящий от $rM/k\exp(-Q/RT_b)$, т. е. скорость горения пропорциональна \sqrt{p} и \sqrt{r} . В случае рассмотрения рекомбинации по реакции (R1) в формуле Зельдовича для константы скорости рекомбинации r необходимо ввести поправочный множитель $(O_2)_0/B_{\text{max}}$, где $(O_2)_0$ концентрация О₂ в исходной смеси.

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ В ВОДОРОДОКИСЛОРОДНОЙ СМЕСИ, РАЗБАВЛЕННОЙ АРГОНОМ, И В ВОДОРОДОВОЗДУШНОЙ СМЕСИ

Табл. 1, 2 содержат рассчитанные по формулам (2)–(5) скорости распространения пламени водородокислородной смеси, разбавленной аргоном, и водородовоздушной смеси в диапазоне p = 47.5 Торр $\div 1$ атм. При вычислениях использовались взятые из механизма [5] константы скоростей реакций: разветвления — $k_1 = 1.92 \cdot 10^{14} \exp(-Q/RT)$,

Таблица 1

Скорости распространения пламен	ни H₂/O₂/Ar
(26/13/61), вычисленные по формул	ле Зельдовича
и в результате точного решения пр	и $T_0 = 370 \text{ K}$

p,Topp	T_b , K	Зельдович			PREMIX	
		T_1 , K	$D(H,T_1)^*, \\ { m cm}^2/{ m c}$	$u, c_{ m CM/c}$	T_1, \mathbf{K}	$u, c_{ m CM/c}$
47.5	2394	1050	151	114	1 100	228
100	2441	1120	89	139	1170	263
200	2485	1190	44	168	1240	293
300	2510	1235	31	187	1290	309
500	2541	1290	20	212	1350	326
760	2566	1340	14	236	1380	337

Примечание. $*D(H,T_1)$ — коэффициент диффузии атомов водорода при температуре T_1 , соответствующей максимуму скорости реакции разветвления.

Таблица 2
Скорости распространения водородовоздушного
пламени стехиометрического состава,
вычисленные по формуле Зельдовича
и в результате точного решения при $T_0 = 300~{ m K}$

			$u,\mathrm{cm/c}$		
p, Topp	T_b , K	T_1, \mathbf{K}	Зельдович	PREMIX	
200	2341	1190	118	211	
300	2356	1235	131	218	
500	2375	1290	148	225	
760	2 389	1 340	165	226	

где Q = 16.44 ккал/моль, и рекомбинации (реакция (R1)) — $r = 3.48 \cdot 10^{16} \times$ $T^{-0.411} \exp(1.115 \text{ (ккал/моль})/RT)$. Для сравнения в таблицах приведены значения температуры T₁ и скорости свободного распространения и пламен смесей этих же составов, полученные из точного решения с использованием программы PREMIX. Сравнение значений T_1 и T_b показывает, что данные пламена относятся к пламенам с низкой скоростью рекомбинации $(T_b - T_1 \approx T_1 - T_0)$, но значения T_1 (см. табл. 1), вычисленные по формулам Зельдовича, ниже значений, полученных в результате точного моделирования. Видимо, взятая для вычислений константа скорости рекомбинации не описывает весь рекомбинационный процесс. Как предлагает Я. Б. Зельдович, для уточнения формулы может быть введен поправочный множитель типа $\sqrt{2}$. Введение поправочного множителя 1.6 позволяет с помощью приближенной теории Зельдовича описать скорость распространения пламени водородокислородной смеси $H_2/O_2/Ar (26/13/61)$ и водородовоздушной стехиометрической смеси в диапазоне p = 47.5 Торр ÷ 1 атм с точностью 10 %.

На рис. З приведены зависимости скорости пламени водородокислородной смеси $H_2/O_2/Ar$ (26/13/61) и водородовоздушной стехиометрической смеси в диапазоне p = 47.5 Торр \div 1 атм как функция с поправочным множителем 1.6, а также экспериментальные данные [6].

Рис. 3. Скорость пламени смесей $H_2/O_2/Ar$ (26/13/61) и $H_2/O_2/N_2$ как функция \sqrt{p} : сплошные линии — моделирование, штриховые — приближенная теория Зельдовича, точки — экспериментальные данные для пламени $H_2/O_2/N_2$ с коэффициентом избытка топлива $\phi = 1.05$ [6]

ЗАКЛЮЧЕНИЕ

Приближенная теория Зельдовича для пламени с разветвленными цепными реакциями при определяющей роли рекомбинационных процессов приводит к разумной физической картине и позволяет получить приближенные формулы для скорости распространения пламени. Конечно, кинетическая схема окисления водорода намного сложнее рассмотренной и принятые упрощения являются причиной расхождений, но сравнение результатов моделирования и экспериментальных данных указывает путь для уточнения зависимостей, полученных для скорости распространения пламени.

ЛИТЕРАТУРА

- 1. Зельдович Я. Б., Франк-Каменецкий Д. А. Теория теплового распространения пламени // Журн. физ. химии. 1938. Т. 12, № 1. С. 100–105.
- Зельдович Я. Б. Цепные реакции в горячих пламенах — приближенная теория скорости пламени // Кинетика и катализ. — 1961. — Т. 11, № 3. — С. 305–318.
 Kee R. J., Grcar J. F., Smooke M. D.,
- Kee R. J., Grcar J. F., Smooke M. D., Miller J. A. PREMIX // Sandia National Laboratories Report. – 1990. – N SAND85-8240.
- 4. Fernandez-Galisteo D., Gonzalo del Alamo, Sanchez A. L., Linan A. Zeldovich analysis

of hydrogen-air premixed flames // Proc. of the Third European Combustion Meeting. - 2007. - Paper 6-19. - P. 1–5.

- Paper 6-19. P. 1–5.
 5. Connaire M. O., Curran H. J., Simmie J. M., Pitz W. J., Westbrook C. K. A comprehensive modeling study of hydrogen oxidation // Intern. J. Chem. Kinet. 2004. V. 36. P. 603–622.
- 6. Aung K. T., Hassan M. I., Faeth G. M. Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed $H_2/O_2/N_2$ flames // Combust. Flame. 1998. V. 112. P. 1-15.

Поступила в редакцию 5/IX 2008 г.