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• We retrieve the volumetric properties of
a dissolved biomolecule by a Voronoi–
Delaunay tessellation analysis of amolec-
ular simulation run.

• The impact of the solute on the local
density of the solvent is short ranged.

• The strong increase of the apparent
volume with temperature is deter-
mined by the expansion of the extra
void volume in the boundary region
(the “thermal volume”).
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Recently a simple formalism was proposed for a quantitative analysis of interatomic voids inside a solute mole-
cule and in the surrounding solvent. It is based on the Voronoi–Delaunay tessellation of structures, obtained in
molecular simulations: successive Voronoi shells are constructed, starting from the interface between the solute
molecule and the solvent, and continuing to the outside (into the solvent) as well as into the interior of themol-
ecule. Similarly, successive Delaunay shells, consisting of Delaunay simplexes, can also be constructed. This tech-
nique can be applied to interpret volumetric data, obtained, for example, in studies of proteins in aqueous
solution. In particular, it allows replacing qualitatively and descriptively introduced properties by strictly defined
quantities, such as the thermal volume, by the boundary voids. The extension and the temperature behavior of the
boundary region, its structure and composition are discussed in detail, using the example of a molecular dynam-
ics model of an aqueous solution of the human amyloid polypeptide, hIAPP. We show that the impact of the sol-
ute on the local density of the solvent is short ranged, limited to the first Delaunay and the first Voronoi shell
around the solute. The extra void volume, created in the boundary region between solute and solvent, determines
the magnitude and the temperature dependence of the apparent volume of the solute molecule.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The partial molar volume of a solute molecule, such as a protein
in aqueous solution, is an important thermodynamic property, which
contains interesting information about its structure and the interaction
between solute and solvent. Moreover, according to Le Châtelier’s
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Fig. 1. 2D illustration of the Voronoi–Delaunay tessellation of a solution. Atoms of the
solute molecule are shown by gray disks. Atoms of the solvent are light. Black lines
show Voronoi cells, red lines show Delaunay simplexes.
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principle, its changes upon reactions or conformational rearrangements
determine the pressure dependence of the underlying chemical or
structural equilibria. Changes in volume observed for conformational
transitions in proteins are coupled to their other physico–chemical
properties, such as expansibilities, compressibilities and volume fluctu-
ations. Like them, the magnitudes of protein volume changes result
from the specific amino acid sequence, and their characterization and
understanding, likewise, yield important information about the physical
basis for protein structure, stability and function. Specifically, the phe-
nomenon of pressure-induced denaturation of proteins is accompanied
by a decrease of its partial molar volume upon unfolding [1–5].

Generally, the void volume contributes significantly to the volumetric
properties of proteins, and changes of temperature and pressure induce
changes of the voids, both inside the solute molecule, at its boundary,
and also in the surrounding water. However, using only experimental
data, it is difficult to separate these contributions unambiguously. Com-
puter simulations help to solve this problem. Models of the solutions
are generated usually bymolecular dynamics simulations (see for exam-
ple Refs. [6,7]). The subsequent analysis of the models is aimed to detect
and characterize interatomic voids and local densities.

There are very different approaches used for the analysis of voids in
atomic andmolecular systems. Someof themwere developed for the in-
vestigation of the empty space between the atoms or particles in liquids
and glasses [8–10], granular matters and colloids [11,12], polymers and
membranes [13,14]. Others were designed to study cavities and pockets
in large biological molecules [15–17]. Solvation shells [18,19] and the
boundary region between proteins are also studied along these lines
[20–22]. Consecutive shells, consisting of Voronoi cells, were used for
the analysis of the density of hydration shells around polypeptides in
Ref. [23].

In Ref. [22] we proposed an approach, where the voids both inside
and in the surroundings of a solute molecule can be investigated by a
single-stage method for all regions of the solution. It is based on the
Voronoi–Delaunay method [24,25] which is a general mathematical
tool for the detection and analysis of voids and the computation of
local densities in any atomic and molecular system. In this work, we
summarize shortly the main ideas of Refs. [22,23] to decompose the
Voronoi–Delaunay tessellation of a solution into shells related to the
solute. It allows characterizing voids (and thus the local density) both
inside, at the solute–solvent boundary, and outside the solute molecule,
and helps to analyze and discuss volumetric characteristics, in particular
the apparent volume and its components.

The paper is organized as follows: In Sections 2–4we shortly recapit-
ulate the mathematical aspects of the method and introduce the shells,
formed by Voronoi cells or Delaunay simplexes. In Sections 5 and 6 we
apply this methodology to analyze the volumetric properties of a single
polypeptidemolecule in aqueous solution and to investigate its temper-
ature-dependent behavior.
2. Voronoi–Delaunay tessellation of a solution

In molecular biology, Voronoi cells and Delaunay simplexes are
known for a long time (see for example Refs. [26–32]). However, the
tool becomesmore powerfulwhenweuse a combinationof bothVoronoi
cells andDelaunay simplexes in the so-called Voronoi–Delaunay tessella-
tion [24,25].

Fig. 1 shows a two-dimensional illustration of a solution model and
its Voronoi–Delaunay tessellation. It consists of a space-filling mosaic
of Voronoi cells and the corresponding mosaic of Delaunay simplexes.
Topologically, thesemosaics are dual, and one of them can be produced
from the other. Each Voronoi cell is assigned to a particular atom and
represents the volume, which is closest to it. A Delaunay simplex repre-
sents the void space between mutually neighboring atoms.

Thus, in the following discussions of local densities and volumetric
properties, one should keep in mind, that both tessellations are
complementary, one is emphasizing the distribution of the occupied
space, the other of the empty space.

Note, to study interatomic voids, the size of the atoms should be
taken into account. As it is discussed in detail elsewhere [26–28,32], in
this case the Voronoi cells should be constructed by referring to the sur-
face of the atoms. Thus we should deal with the so-called S-tessellation
[33,34] (or additively weighted Voronoi diagram) [24], instead of the or-
dinary Voronoi tessellation (which refers to the atomic centers [35,36]).
S-tessellation gives a more physical assignment of the empty space
to the atoms, as in this case a Voronoi cell comprises all points of
space that are closer to the surface of a given atom than to the surfaces
of all other atoms of the system. Voronoi S-cells have curved faces;
this complicates the calculation of volumes. Other complexities of the
S-tessellation (theoretically possible disconnectedness of the tessella-
tion and overlapping of Delaunay simplexes in some cases) [25,37] are
not important for our molecular systems, where the size difference of
the atoms is rather small (usually the radii of the heavy or united
atom spheres differ by not more than a factor of 2). Another variant,
which considers the atomic surfaces, is the well-known radical
(or power) tessellation [24,28,38]. In this case, the assignment of the
empty space to individual atoms deviates slightly from the more phys-
ical S-tessellation, but it is much easier to implement.

We used both, the S- and the radical tessellation, and found that the
obtained volumes do not differ very much, yielding the same physical
results [23]. In this paper we use the radical tessellation, because an ef-
ficient method for the calculation of the empty volume of the intersec-
tion of Voronoi and Delaunay shells (see below) was implemented
only for this tessellation [39].

In our geometrical analysis, the molecules of the solvent (the water
molecules) are considered as uniform spheres, which are centered on
the oxygen atom, as it is usually done in structural analyses of computer
models of water and aqueous solutions. The atoms of the solute mole-
cule are considered as spheres with diameters equal to the values of
their Lennard-Jones parameters σ, used in the molecular dynamics
simulations.

The calculation of the Voronoi–Delaunay tessellation is straightfor-
ward now. Here we used our own algorithms, but programs for the cal-
culation of power tessellations are available also in standard geometrical
libraries [40].

In a first stage, no distinction between solute and solvent atoms is
made: the system of all atoms is considered as a whole. The tessellation
is calculated for a large number of instantaneous configurations (“snap-
shots”) of the simulation run, to yield the mean values of the studied
characteristics.
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3. Voronoi shells

Knowing the adjacency of the atoms from the Voronoi–Delaunay
tessellation, one can begin to allocate Voronoi shells around the solute
molecule. At first, the boundary Voronoi shell of the solute molecule
is constructed by use of the following simple rule: go over all atoms of
the solute molecule and mark those, which are adjacent to at least one
atom of the solvent (adjacency is defined by the sharing of a common
Voronoi face). Thus we establish the set of atoms of the solute molecule,
which are in direct contact with the solvent, and simultaneously, the set
of atoms of the solvent which are in contact with the solute. The former
represent the boundary atoms of the solute, and the latter define the
nearest solvation shell.

Let us assign indexes 0 and 1 to these atoms, and call these groups of
atoms (and their Voronoi cells) as 0th and 1st Voronoi shell (see Fig. 2).
Let us denote the number of atoms in the shells as N0 and N1. The
volume of the shells (V0 and V1) can be calculated as the sum of the
volumes of the Voronoi cells in a given shell.

Knowing the 1st Voronoi shell, one can calculate all outer shells. The
2nd Voronoi shell is defined by the solvent atoms which are neighbors
of the 1st shell (adjacent to atoms with index 1). Let us assign index 2
to these atoms. Similarly, we can select outer neighbors of the 2nd
shell. They define the 3rd Voronoi shell and get index 3. By continuing
further, all subsequent Voronoi shells can be selected, and called the
4th, 5th, …, kth … and so on, up to the maximum that is permitted by
the size of the model system [22,23]. From a mathematical point of
view, the Voronoi shells correspond to the consecutive topological
neighbors on the Delaunay network (Fig. 1, see for example Ref. [41]
and references given there). However, in those papers the selection of
the neighbors begins from a single (central) site (Voronoi cell). In our
case, we start from the boundary atoms of the solute molecule. The
shapes of the Voronoi shells can be very different and are determined
by the structure and conformation of the solute molecule.

In Ref. [22] it was proposed to continue the construction of Voronoi
shells into the interior of the molecule. All internal neighbors of the 0th
shell represent the −1st (minus first) Voronoi shell. The atoms of this
shell have index −1. Similarly, one can select inner neighbors of the
−1st shell. They represent the−2nd (minus second) Voronoi shell, and
its atoms get the index −2. By continuing this, one can determine all
subsequent “negative” shells, until all atoms of themolecule are covered.

Thus, we decomposed the solution into shells in relation to the sur-
face of the solute molecule. This decomposition is unambiguous: no
atom (Voronoi cell) is unconsidered, and none is taken into account
twice. For each Voronoi shell different characteristics can be calculated,
Fig. 2. Illustration of the 1st and the 0th Voronoi shell. All solvent atomswith index 1 (pink
circles) have at least one atom of the solute as a neighbor. All solute atoms with index 0
(dark-gray circles) have at least one atom of the solvent as a neighbor.
e.g.: the number of atomsNk (the number of Voronoi cells); the volume
Vk, defined as the sumof the volumes of all Voronoi cells of the shell; the
mean volume of the Voronoi cell vk=Vk/Nk; the inner and outer surface
areas Sk − 1 and Sk, which are calculated as the sum of the areas of the
Voronoi faces that are shared by the atoms of adjacent shells, and so on.

4. Delaunay shells

We can classify the Delaunay simplexes of the solution by using the
indexes of the Voronoi shells. Let us define thus the index I of a given
Delaunay simplex as the sum of the Voronoi shell indexes ik of the
atoms at its vertices [22] (recall: a Delaunay simplex has four vertices
in 3D): I = i1 + i2 + i3 + i4.

Atoms of the 0th (ik=0) and the 1st (ik=1) Voronoi shell can form
the following simplex indexes:

I = 0 (all simplex vertices are located on atoms of the solute mole-
cule: all ik = 0);

I = 1 (three vertices on the solute and one on solvent: one ik = 1);
I = 2 (correspondingly: two ik = 1);
I = 3 (correspondingly: three ik = 1);
I = 4 (all vertices are on solvent molecules: all four ik = 1).

We call the union of Delaunay simplexes with the same index I as
Delaunay subshell I. The subshells 0 and 4 are produced by atoms that
belong to the same Voronoi shell (the 0th, and the 1st one). They are
the result of “folds” (“wrinkles”) of the Voronoi shells, and typically
they contain less simplexes and their volume is smaller than that of
neighboring subshells. For our current task more important are the
subshells, which are formed by Delaunay simplexes with vertices both
from the 0th and 1st Voronoi shells (I = 1, 2, 3). The union of these
simplexes represents a solid shell between the solute and the solvent.
We call this shell the first Delaunay shell. (To emphasize a distinction
between shells of Delaunay simplexes and shells of Voronoi cells, we
used in Refs. [22,23] the word “layer” in case of Delaunay simplexes.
Here and afterwards we use the word “shell” in the both cases.)

For illustration, Fig. 3 shows the first Delaunay shell in two dimen-
sions. In the plane, the Delaunay simplex has three vertices, thus I =
i1+ i2+ i3 with ik=0 or 1. Then there are only four different Delaunay
simplex indexes: I = 0–3, and the first Delaunay shell is composed of
two Delaunay subshells (I = 1 and 2).

As it was discussed in Ref. [22], one can also define subsequent
Delaunay shells, between consecutive Voronoi shells. The simplexes,
whose vertices are positioned on atoms of the first and the second
Voronoi shells, represent a solid shell between the atoms of these
Voronoi shells, and define the second Delaunay shell, and so on. We
can also select Delaunay simplexes inside the solute molecule. They
Fig. 3. 2D illustration of the first Delaunay shell for the model shown in Fig. 2 (between
thick red lines).

image of Fig.�3
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form the inner Delaunay shellswith numbers 0 (zero),−1 (minus one),
−2 (minus two) and so on. Every K-th Delaunay shell can be character-
ized by its total volume DK or by its empty volume EK (without the
volume occupied by the spheres, which represent the atoms). Below
we will deal mainly with the first Delaunay shell, which represents
the boundary area between the solute molecule and the solvent.
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Fig. 5. Temperature behavior of the density of bulk SPC/E water, used in the simulation
(squares, right axis), and the mean volume of the Voronoi cells of the bulk water mole-
cules, 〈V0〉 = 1/ρ (circles, left axis). Note that the density maximum of the SPC/E water
model is close to 240 K [43].

1,04
5. Voronoi and Delaunay shells in an aqueous solution of the
hIAPP molecule

In this paper we analyze molecular dynamics simulations of an
aqueous solution of a polypeptidemolecule, which is essentially unfold-
ed in its native state, the human islet amyloid polypeptide (hIAPP). The
simulation runs had been produced by Andrews and Winter [42]. The
system consists of a single solute hIAPP molecule, containing 462
heavy atoms, which is surrounded by 10843 SPC/E water model mole-
cules (for more simulation details, see Ref. [42]). Production runs of
up to 500 ns each had been performed for 11 different temperatures
from 250 to 450 K. For the analysis of the individual simulation runs,
1000 independent snapshots, equally spaced over the last 200 ns
(every 200 ps) were used for averaging the volumetric properties.

These models had been used also in our previous paper, Ref. [23],
where we discussed methods for the selection of hydration shells and
investigated different approaches for the calculation of the apparent
volume of a solutemacromolecule. Herewe extend the volumetric anal-
ysis to a more detailed level: we analyze voids both in the surrounding
water and in the interior of the biopolymer, calculate separate contribu-
tions to the apparent volume and relate themwith distinct components
of the empty boundary volume.

We decompose the configurations of the molecular dynamics runs
into Voronoi and Delaunay shells, as described above. The size of our
system allows the use of seven consecutive Voronoi shells: k = −1, 0,
1, 2, 3, 4, 5. The shell −2 appears not in every configuration, therefore
we do not analyze it specially.

Fig. 4 (left) shows the temperature dependence of the volumes of
the Voronoi shells number k = −1, 0, 1 and 2. With the exception of
shell k = −1, the shells demonstrate a pronounced increase of the
volume with temperature. It reflects obviously the decrease of the
bulkwater densitywith temperature (see Fig. 5). The kinks in the curves
of the shell volume Vk in Fig. 4 is due to an insufficient sampling. There
are similar kinks in the curves for the number of cells in the shells Nk

(see Fig. 10 in Ref. [22]). However, the curves becomes more smoothed,
when we go from the volume of the shells to the density Nk/Vk (see
Fig. 6).
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Fig. 4. (Left) Voronoi shell volumes of thehIAPPmolecule in aqueous solution as a function
of temperature. Frombottom to top: shells numbers−1 to 2. (Right) Empty volumeof the
Delaunay shells for the same molecule.
For the inner Voronoi shell (k=−1), there is no noticeable change
with temperature. This means that the dissolved molecule itself does
not change its volume systematically. The same is shown for
the Delaunay shells: the empty volume EK of the inner Delaunay shell
(K=0) does not change with temperature, whereas the empty volume
of the boundary (K= 1) and the outer one (K= 2) increase (see Fig. 4,
right).

Fig. 6 shows the relative densityρk/ρbulk ofwater in different Voronoi
shells (from 1st to 4th) as function of temperature. The density ρk of the
kth shell is defined in this case as the ratio Nk/Vk, where Nk is the mean
number of water molecules, and Vk is the mean volume of the kth shell.
A significant difference to bulk water is observed only for the first
Voronoi shell (k = 1): between 4% and 1% in our temperature interval.
This increased local density is in accord with the generally observed
existence of a pronounced peak in thewater density distribution around
a solute molecule [23]. In the next shells, the water density is very close
to the bulk value for all temperatures. In this case the deviation of the
ratio from 1 is at the limits of our computational uncertainty. However,
the density in the second shell appears to be slightly higher than in
the third and fourth shells. Thus one can say that the solute molecule
slightly influences also the second shell of the hydration water.
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Fig. 6.Relative density ofwater in differentVoronoi shellswith respect to bulkwater at the
same temperature, ρk/ρbulk. The shells vary from 1st to 4th.
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We remind here the following technical detail: when calculating the
mean volume of Voronoi shell Vk, the so-calledmosaic effect (due to the
existence of a correlation between the volume of a Voronoi cell and the
number of its neighbors) should be taken into account [23,44]. This
correlation leads to a small artificial overestimation (in the range of
one percent) of the mean volume of the Voronoi shells. The necessary
corrections were done by using the formulas suggested in Ref. [44].
The small shifts of the relative densities of the third and fourth shells
to values below 1.0 in Fig. 6 presumably results from the approximate
nature of these corrections.

6. Apparent volume and its components

The partialmolar volume of a solutemolecule j in aqueous solution is
defined as the volume change of the solution, when the solute is added:
Vj = (∂V/∂Nj)T,p,Nw, where Nj and Nw are the number of solute and sol-
vent molecules, respectively. At infinite dilution, i.e. without contribu-
tion of solute–solute interactions, the volume change on adding a
single solute molecule to the solvent is called the apparent volume
Vapp of the solute molecule in the solvent.

Generally, it is assumed that Vapp is given by the sum of two contri-
butions, the intrinsic volume Vint, which reflects the “size” of the solute
molecule in solution, and a volume change ΔV in the surrounding sol-
vent [1,45–47].

Vapp ¼ V int þ ΔV ð1Þ

Eq. (1) should also contain an ideal gas term, but this can be
neglected due to the low compressibility of water [1,47–49].

Unfortunately there is no experimental method, which allows a
separation of the two component volumes Vint and ΔV and theoretical
approaches slightly vary in different papers.

6.1. Intrinsic, molecular, and thermal volume

In the framework of a Voronoi–Delaunay analysis it is natural to
equate the intrinsic volume Vint of a molecule with its Voronoi volume
(VVor). The Voronoi volume is the volume “assigned” to the solute
molecule in solution, and can be calculated as the sum of the Voronoi
volumes of all atoms of the molecule. It includes the van derWaals vol-
ume (the sum of all fused spheres, representing the atoms of the solute
molecule), the empty space inside, and a part of the surrounding empty
space (see Figs. 2 and 7). This was discussed in biological physics many
Voronoi surface of 

the molecule 

Voronoi surface 

Molecular surface 

Outer surface of the Delaunay shell 

Inner surface of the Delaunay shell 

Fig. 7. A section of the model shown in Fig. 2. Dotted lines show the inner and outer sur-
faces of thefirst Delaunay shell. The black thick line shows the Voronoi surface of the solute
molecule. It confines the intrinsic volume of the solute molecule. The empty volume of the
Delaunay shell (VB) is green. The dark-green part is assigned to the solute molecule (VBM).
The light-green area belongs to the solvent (VBS). The thick red line around the atoms of the
molecule represents the Voronoi–Delaunaymolecular surface, which confines themolecu-
lar volume VM of the solute molecule.
times [23,27,29,30]. The calculation of theVoronoi volumeof amolecule
can be performed from molecular dynamics models without problems.
Thus we suggested in Ref. [23] that

V int ¼ VVor: ð2Þ

In Refs. [50–52] the cavity volumeVcav is introduced,which is the vol-
ume accommodating the solute molecule and is assumed to consist of
two parts:

Vcav ¼ VM þ VT: ð3Þ

VM is the molecular volume and is assumed to be the van der Waals
volume of the solute molecule, together with the volume of inner
voids, both impenetrable to the surrounding water. To calculate VM,
we should first define a complete boundary around the molecule. Usu-
ally, the well-known Connolly surface [53] is used for this purpose.
However this needs the introduction of an extra parameter R, the radius
of a probe sphere rolling over the molecule. Within the Voronoi–
Delaunay technique, a similar surface can be provided without any ad-
ditional parameter. Thismolecular surface consists of segments of atom-
ic surfaces (parts of spheres) and sections of the Delaunay simplex faces
(parts of planes), covering the gaps between boundary atoms (see bold
red line in Fig. 7 as two-dimensional illustration). The volume inside this
surface can be calculated as the volume of the union of all atoms of the
molecule, plus the empty volume of all Delaunay simplexes, which are
formed by the atoms of the solute molecule [39].

VT is the so-called thermal volume, which represents an extra void
volume around the solute molecule. As written in Refs. [1,47], it is the
“void volume created around a solutemolecule due to themutual vibra-
tions of solute and solvent molecules as well as to structural, packing,
and steric effects.” This interpretation does not really give a recipe to
trace out this volume. In Refs. [50–52] it is considered as an empty
shell around a solutemoleculewith thickness δ. This is a formal descrip-
tion of the voids appearing around the solutemolecule, and the value of
δ is a measure for the thermal volume in the frame of this theoretical
approach.

6.2. Empty boundary volume VB

The Voronoi–Delaunay method, equipped with mathematically
strict definitions, helps to investigate the surrounding voids in detail.
Firstly, we calculate the empty boundary volume VB as the sum of the
empty volumes of the Delaunay simplexes, which form the first
Delaunay shell (dark and light green areas in Fig. 7).

The calculation of the empty volume of the Delaunay simplexes for
overlapping atoms can be done both by numerical and analytical
methods (see for example Refs. [14,39]). Obviously, we cannot equate
VB strictly with the thermal volume VT, because the latter one is not
defined geometrically. Nonetheless, the temperature behavior of VB

and VT should be closely related. Thus we can examine VB to investigate
the role of the solute–solvent boundary in the temperature dependence
of the apparent volume.

The empty boundary volume VB is divided into two parts by the
Voronoi surface of the molecule (Fig. 7):

VB ¼ VB
M þ VB

S
: ð4Þ

The first part (VBM) is assigned to the solute molecule and the second
one (VB

S) belongs to the solvent. The volume calculation of these
individual components is more complex (they are intersections of the
Delaunay and Voronoi shells), however, it can be also performed by
our method [39].

Fig. 8 demonstrates the temperature behavior of the boundary
empty volume VB and its components for the hIAPP molecule. We
see a strong (around 50%) temperature change in the considered
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temperature range. Note, the normalized change of these volumes is
identical (see Fig. 8, right). This means that the division of VB into VB

M

and VB
S is rather mathematical than physical. Both components are

equivalent parts of the boundary empty volume.
It is most interesting that themagnitude of the thermal expansion of

VB, (about 50%) is much larger than that of the puremodelwater, which
is less than 20% in the same temperature interval (see Fig. 5). Thus the
density in the boundary region decreases with temperature much
stronger than in bulk water. This is an indication that the boundary re-
gion dominates the temperature dependence of the apparent volume in
Fig. 9.
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Fig. 9. Apparent volume Vapp of the polypeptide hIAPP in water and its components as
function of temperature. Vint =VM +VB

M : intrinsic volume calculated as Voronoi volume
of the molecule; VM: molecular volume, VB

M: boundary empty volume assigned to the
solute molecule. ΔV: contribution of the solvent calculated as (Vapp − Vint).
6.3. Decomposition of the apparent volume

The apparent volumeVapp of thehIAPPmolecule had been calculated
previously [23]. Remember, Vapp is the difference between the volume
of the solution and the volume of the same amount of pure solvent.
In the simplest case, it can be calculated as the difference between the
volume of a model box with the solute molecule in water, and the vol-
ume of the model box, containing the same amount of pure water at
the same pressure and temperature. Different approaches to determine
Vapp are discussed in Refs. [23,46,48,49,54].

On the other hand, using Eqs. (1) and (2) and the relation

VVor ¼ VM þ VB
M ð5Þ

which is obvious from Fig. 7, we can present the apparent volume as:

Vapp ¼ VM þ VB
M þ ΔV : ð6Þ

Fig. 9 assembles the temperature behavior of the apparent volume
and its components, calculated for the hIAPP molecule. The values of
Vapp and Vint = VVor were calculated earlier in Ref. [23]. Nowwe demon-
strate also the temperature dependence of VM and VB

M.
We see, VM does not change with temperature, whereas VBM and ΔV

increase markedly. (The latter quantity was determined according to
Eq. (1) as difference between the calculated values Vapp and Vint =
VVor). Thus, here the temperature behavior of the apparent volume is
caused by VB

M and ΔV, but not by VM.
Note that ΔV is negative. This is because in the partitioning of Vapp

according to Eq. (6) ΔV mainly reflects the increased density of the
first Voronoi shell around the hIAPPmolecule (see Fig. 6). With increas-
ing temperature the density of the first Voronoi shell decreases. Howev-
er, it remains larger than in the bulk up to the highest temperatures
considered here.

6.4. Estimation of ΔV

From the definition of the apparent volume, the contribution of the
solvent ΔV can be written as [23,46,54]:

ΔV ¼ Vhyd
–Vbulk

; ð7Þ

where Vhyd is the volume of the “hydration water” (all the water that is
influenced by the solute molecule) and Vbulk is the volume of the same
amount of bulk water. As the “van der Waals volume” of the individual
water molecules is fixed, ΔV is fully determined by the change of the
void volume. Thus ΔV is given by the difference between the void vol-
ume in the hydration water (Vvoid

hyd ) and the void volume in the same
amount of bulk water (Vvoid

bulk). As Vint in Eq. (1) is bounded in our ap-
proach (Eq. (2)) by the Voronoi surface (Fig. 7), the hydration volume
Vhyd extends to the Voronoi surface of the solute molecule. Thus, the
voids in the hydration water can be written as the sum of the part VB

S

of the empty boundary volume VB that is outside the Voronoi volume
(see Fig. 7 and Eq. (4)), plus the volume of the voids in the hydration
water beyond VB (“the rest”):

Vvoid
hyd ¼ VB

S þ Vvoid
rest;hyd

: ð8Þ

Formally, a similar expression can be written for the voids in bulk
water:

Vvoid
bulk ¼ VB

S;bulk þ Vvoid
rest;bulk

: ð9Þ

Here, VBS,bulk is the void volume of a water layer in bulk water, which
is comparable to the volume VB

S.
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After subtraction we get

ΔV ¼ Vvoid
hyd

–Vvoid
bulk ¼ VB

S
–VB

S;bulk
� �

þ Vvoid
rest;hyd

–Vvoid
rest;bulk

� �
:

As the density beyond the first Voronoi shell of our solute molecule
is practically identical to that of bulkwater (Fig. 6), wemay assume that

Vvoid
rest;hyd

–Vvoid
rest;bulk≈0; ð10Þ

and therefore

ΔV≈VB
S
–VB

S;bulk
: ð11Þ

From our calculations we know ΔV and VB
S (Figs. 8 and 9), so we can

estimate fromEq. (11) the value of VBS,bulk. Fig. 10 demonstrates the tem-
perature behavior of the components of Eq. (11). The fact, that the
empty boundary volume VB

S is smaller than the void volume VB
S,bulk of a

comparable amount of bulk water (in accord with the higher density
of the first Voronoi shell), leads to the negative value of ΔV.

VB
S,bulk can be estimated as a part of the void space of n1 water mole-

cules in bulk water, where n1 is the number of water molecules in the
first Voronoi shell of our solute molecule. It can be written as

VB
S;bulk ¼ f � v0empty � n1; ð12Þ

where the factor f should be about 0.5. Indeed, the product v0 empty ∙ n1
estimates themean empty volume of thefirst Voronoi shell, and the vol-
ume VB

S,bulk corresponds to the inner half of this shell: the light green
area in Fig. 7, bounded by the outer surface of the first Delaunay shell
(dotted) and the Voronoi surface (black thick line). The mean empty
volume per molecule in bulk water v0 empty and the mean number of
water molecules in the Voronoi shell depend on temperature and can
easily be calculated in our approach (see Ref. [22] and Fig. 5). We
found that the factor f does not depend on temperature and is equal to
0.452 ± 0.004. The crosses in Fig. 10 show the validity of Eq. (12).
(This coincidence confirms the correctness of our reasoning to use the
formal decomposition of Vvoid

bulk in Eq. (9) and of the estimate Eq. (10)).
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Fig. 10. Temperature behavior of the components of Eq. (11): ΔV (circles), VB
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6.5. Alternative decomposition of Vapp : VB as the “themal volume”

In spite of the fact that the volume VB is not an explicit component
of the apparent volume in Eq. (6), this quantity is most suitable to
represent the thermal volume as introduced in Refs. [1,47], where
it was defined as the void between solute and solvent molecules.
To explicitly connect it with the apparent volume, we write, by using
Eqs. (11) and (6):

Vapp ¼ VM þ VB−VB
S;bulk

: ð13Þ

This partitioning of Vapp points out, that the extra volume contribu-
tion beyond the impenetrable molecular volume VM is constituted by
the void volume VB between the molecule and the solvent, corrected
by the void volume VB

S,bulk, which had already been present in the bulk
water, as discussed above.

Fig. 11 demonstrates the temperature behavior of the components of
Eq. (13) for the hIAPP molecule. We can say, that the increase of Vapp

with temperature is caused solely by the expansion of the extra void
volume VB − VB

S,bulk, induced by the solute molecule in its close vicinity.
The fact, that the apparent volume Vapp of the hIAPP molecule in-

creases, means that the empty volume in the boundary region expands
with temperature faster than in the bulk. This property is quite general.
In fact, experimental investigations of water in porous materials as
well as simulations of water in cylindrical and slit model pores with
structure-less hydrophilic and hydrophobic walls have shown, that
the thermal expansion coefficient of hydration water at ambient tem-
peratures is larger than that of bulk water [55]. This has been assigned
to the reduced number of water neighbors at the interface.

Finally it should be noted, that the depleted region, which envelopes
the solute molecule, is very thin, it does not extend beyond the first
Delaunay shell. This is in accordwith the small values, given in the liter-
ature for the “empty shell” thickness [50–52].

7. Conclusions

In this paper we use the decomposition of the molecular dynamics
models of a biomolecular solution into Voronoi and Delaunay shells,
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Fig. 11. Apparent volume Vapp of the polypeptide hIAPP in water and its components as
function of temperature. VM: molecular volume, VB: total boundary empty volume be-
tween the solute molecule and solvent, VBS,bulk: contribution from bulk water, see text.
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as discussed inRef. [22], to study the temperature behavior of the appar-
ent volume of a natively unfolded polypeptide (hIAPP) in aqueous solu-
tion. In the first stage, the Voronoi–Delaunay tessellation is calculated
for the total ensemble of atoms of the solution. After that, consecutive
Voronoi and Delaunay shells are defined, starting from the border be-
tween molecule and solvent. We use this approach to make a quantita-
tive calculation of the molecular volume of the solute (VM – volume of
the union of atoms of the molecule together with the inner voids) and
the empty volume at the boundary region between solute and solvent
(VB – empty volume of the boundary Delaunay shell). Additionally, we
separate this empty volume into two parts, which are assigned to the
solute (VBM) and the solvent (VBS), respectively. The impact of the solute
on the local density of the solvent is very short ranged, limited to the
first Delaunay and the first Voronoi shell around the solute. A depletion
zone, represented by the inner part VB

M of the first Delaunay shell is
followed by a zone of increased density, represented by thefirst Voronoi
shell.

We show that the strong increase of the apparent volume of hIAPP
with temperature is mainly due to the expansion of the surrounding
boundary layer (VB), but not to the modification of the solute molecule
itself. The molecular volume VM does not change perceivably with tem-
perature. Additionally, it was found that the contribution of the solvent
beyond the boundary layer to the temperature dependence of the
apparent volume of hIAPP is negligible.

It is safe to say that the characteristics and the temperature
dependence of the apparent volume of hIAPP is largely controlled by
the “thermal volume,” a term often discussed in chemistry and biology
of macromolecular solutions. In spite of the fact, that this notation has
not an explicit geometrical interpretation, it coincides unambiguously
with the strictly defined extra void volume VB − VB

S,bulk, created in the
boundary between solute and solvent [1,47]. Finally, it has to be
stressed, that this extra void region, which determines the apparent
volume is very short ranged, less than the extent of the first Delaunay
shell.

The situation can be different for other solute molecules. In the
analyzed simulations, the hIAPP molecule is in an “essentially random
coil” state [56]. For larger, folded proteins a possible temperature-
dependence of VM has to be taken into account as well, because of inter-
nal extra voids. The different strengths of hydrophilicity or -phobicity of
the solute molecule can also play a role.

To conclude, we hope that our results shine some light on the long-
standing and often controversial debate surrounding the physical basis
for understanding and decomposing the volumetric properties of
biomolecular systems. Our results clearly support the notion that partial
molar volumetric properties of peptides are strongly coupled to the
volumetric properties (void volume) at the protein–solvent interface
as well as to changes of the hydrational properties at the interface
with respect to the bulk properties of the solvent. The conceptual
basis for resolving volumetric properties into their various structural,
interfacial and hydrational contributions using the approach presented
might even enable us to unravel the various volumetric contributions
of more complex systems and processes, such as natively folded pro-
teins and protein–ligand interactions.
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