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1. INTRODUCTION

Understanding of the conformation and stability of proteins
has fascinated biophysicists and biochemists for many years and
remains still one of the most challenging issues in the field. In
general, the conformation and thermodynamic properties of
proteins depend on temperature, pressure, their hydration
capacity, and the solvent properties.1,2 In this regard, one physical
chemical property of proteins that has received considerably less
attention over the years is the partial molar volume and its co-
efficient of thermal expansion, which have proven to be sensitive
measures of hydration effects.1�6 Indeed, the factors contribut-
ing to the volumetric properties of proteins and their tempera-
ture dependence have long eluded understanding. Generally, the
volume of protein solutions varies with temperature due to varia-
tions in either the volume of the protein, the volume of the bulk
water, the volume of the hydrating water, and/or a change in the
number of interacting and bulk water molecules. How many
water layers with properties different from bulk water may form
at the protein surface depends on several factors: the hydro-
phobicity/hydrophilicity of the surface groups, the charge den-
sity and its spatial distribution, and the strength of the thermal

forces that tend to disrupt the induced solvent structure. Increase
of temperature is expected to lead to a disruption of the solvent
layer, which, in turn, should be reflected in the temperature
dependence of the expansion coefficient. Recently, a rather new
technique, pressure perturbation calorimetry (PPC), has been
introduced, which is complementary to densimetric measure-
ments and has the high sensitivity which is necessary to detect
small volumetric changes.7�13 To yield a molecular interpreta-
tion of the different terms contributing to the partial protein
volume and its temperature dependence, and hence a better
understanding of the experimental data, molecular dynamics
(MD) computer simulations and proper extraction of volumetric
data are prerequisite.

To determine the properties of hydration water frommolecular
simulations, usually simple geometric definitions of the hydration
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ABSTRACT:The study of hydration, folding, and interaction of proteins by
volumetric measurements has been promoted by recent advances in the
development of highly sensitive instrumentations. However, the separation
of the measured apparent volumes into contributions from the protein and
the hydration water, Vapp = Vint + ΔV, is still challenging, even with the
detailed microscopic structural information from molecular simulations. By
the examples of the amyloidogenic polypeptides hIAPP and Aβ42 in
aqueous solution, we analyze molecular dynamics simulation runs for
different temperatures, using the Voronoi�Delaunay tessellation method.
This method allows a parameter free determination of the intrinsic volume
Vint of complex solute molecules without any additional assumptions. For
comparison, we also use fused sphere calculations, which deliver van der
Waals and solute accessible surface volumes as special cases. The apparent
volume Vapp of the solute molecules is calculated by different approaches, using either a traditional distance based selection of
hydration water or the construction of sequential Voronoi shells. We find an astonishing coincidence with the predictions of a simple
empirical approach, which is based on experimentally determined amino acid side chain contributions (Biophys. Chem. 1999, 82,
35). The intrinsic volumes of the polypeptides are larger than their apparent volumes and also increase with temperature. This is due
to a negative contribution of the hydration waterΔV to the apparent volume. The absolute value of this contribution is less than 10%
of the intrinsic volume for bothmolecules and decreases with temperature. Essential volumetric differences between hydration water
and bulk water are observed in the nearest neighborhood of the solute only, practically in the first two Delaunay sublayers of the first
Voronoi shell. This also helps to understand the pressure dependence of the partial molar volumes of proteins.



B dx.doi.org/10.1021/jp2050788 |J. Phys. Chem. B XXXX, XXX, 000–000

The Journal of Physical Chemistry B ARTICLE

shell are used: the hydration shell of a dissolved molecule com-
prises all water molecules within some cutoff distance R from the
solute molecule. The distance is measured between the oxygen
atomof thewatermolecule and the closest heavy (non-hydrogen)
atom of the solute. In this way, local properties of the hydration
water, like molecular orientations, hydrogen bond network
structure, dynamical properties, and thermodynamic character-
istics, are calculated as averages over the water molecules within
the hydration shell volume.14�21 By varying the cutoff distanceR,
the sensitivity of the obtained results from the specific choice of
this parameter can be tested. However, when trying to calculate
volumetric properties, like the molecular volume of the solute or
the hydration shell volume itself, this approach is of limited use.
For example, to calculate the intrinsic volume of the solute mole-
cule (the volume occupied by the molecule itself), different defi-
nitions could be used, in particular the volume within the van der
Waals (vdW) surface of the molecule or within the solvent
accessible surface (SAS), leaving the question of how to partition
the intermediate volume between solute and solvent.

An alternative approach to define the hydration shell of a
solute molecule is based on the Voronoi�Delaunay method.
This method is well established in mathematics22 and physics23

and has been suggested for the determination of molecular struc-
tures and volumes in molecular biology.24�27 The idea to use this
method also for the construction of hydration shells is obvious: a
Voronoi�Delaunay tessellation (mosaic) assigns to each atom in
an atomic system an associated volume, called the Voronoi
polyhedron, Voronoi region, or Voronoi cell. This cell defines not
only the volume “belonging to this atom” but also its nearest
neighbors: they share a common polyhedron face with the given
atom. Thus, they represent a natural shell around the solute
molecule. David and David28 suggested this for a polyatomic
solute. They defined the Voronoi region of a solute as the union
of all Voronoi polyhedra which are centered on an atom of the
solute and which are constructed by using all (heavy) atoms of
the solute and all oxygen atoms of the solvent water. They con-
sidered so-called ordinary (classical) Voronoi polyhedra, which
are defined for a system of points (here the centers of the
atoms).29,30 Mezei31 pointed out that the different sizes of the
atoms should be taken into account for the calculation of the
Voronoi regions for molecular solutions, and proposed to use for
molecular solutions so-called radical (power) Voronoi cells,32

which are based on the atomic van derWaals spheres. Up to now,
the Voronoi�Delaunay method was used only rarely for the
analysis of molecular hydration shells. Indeed, if the main goal is
the determination of nearest neighbors of a solute molecule, the
distance based (DB) criterion is much simpler and sufficient for
many purposes. Working with Voronoi regions is rather intricate
in comparison with the much simpler calculation of distances
between points. However, the Voronoi�Delaunay method has
many advantages: First, it uses common geometrical relations to
determine the nearest neighbors. There is no necessity to intro-
duce a more or less arbitrary cutoff distance R as in the case of the
DB criterion; thus, it is parameter free.33�38 It also provides a
plausible definition of the intrinsic volume. Unlike the molecular
(or van der Waals) volume, the Voronoi volume does take into
account structural changes which alter the free volume accessible
to the solute molecule. This is a reasonable measure for com-
parison with the experimental values.39�41 Moreover, the idea to
use the volume which is “assigned” to the atoms can be applied
not only to the solute molecule but also to the solvent. This
allows the calculation of the volume of the hydration shell.42

Thus, the Voronoi�Delaunaymethod can be considered as an
alternative to the traditional DB approach, both for the selection
of the hydration water and for the analysis of the hydration shell
characteristics. In this paper, we apply two variants of this method
for the determination of the volumetric properties of the poly-
peptides hIAPP and Aβ42 from molecular dynamic simulations
of their monomolecular aqueous solutions.

2. METHODS

2.1. MD Simulation Outline. Single amyloidogenic polypep-
tide chains in aqueous solution have been simulated by use of the
molecular dynamics software package GROMACS 3.3.1.43 They
have the following sequences of 37 and 42 residues (one letter
symbols for the amino acids44):
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY
(hIAPP) and
DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLM-
VGGVVIA (Aβ42)and are immersed in 7407 (hIAPP) and
7704 (Aβ42), respectively, water molecules in a cubic box with
periodic boundary conditions. For the peptides, the OPLS-AA
force-field45,46 has been used, and for water, the SPC/Emodel.47

hIAPP is simulated in its oxidized form, with a disulfide
bond.48 The terminating groups are considered to be fully
ionized. Also, the charges of the residues K, R, D, and E have
been set to +1e and�1e, respectively, yielding a net charge of
+2e for hIAPP and �3e for Aβ42.21,48 In order to neutralize
the system in solution, the total charge on the biopolymers was
scaled down to neutrality by distributing an equal and opposite
charge on all atoms of the polypeptide itself, as described in
previous studies.21,49,48 The simulation runs were performed
with 2 fs time steps in the NPT ensemble at constant pressure
p = 1 bar. More technical details on the simulation runs can be
found for hIAPP in refs 48 and 64 and for Aβ42 in ref 21.
Production runs of 200�500 ns each were performed for 11
different temperatures from 250 to 450 K (for the hIAPP
solution) and for 22 temperatures from 250 to 460 K (for the
Aβ42 solution).
For the analysis of the hIAPP solutions, 1000 independent

configurations, equally spaced over the last 200 ns (every 200 ps)
of the equilibrated production run, were used for averaging. (As
test runs showed, averaging over 5000 and 20000 configurations
(every 40 and 10 ps) yields the same results.) For the analysis
of the Aβ42 solution, 1000 independent configurations (every
10 ps) were used.
2.2. Voronoi�DelaunayMethod for Solvation Shells. In an

atomic system, a region of space can be assigned to each atom
(called here its Voronoi cell) which is defined such that all space
points of this region are closer to the given atom than to any other
atom of the system. The Voronoi cells divide the space between
the atoms without gaps and overlapping, and represent the so-
called Voronoi tessellation.
If the distance to an atom is measured to its center (the van der

Waals radius of the atom not being taken into account), then one
gets an ordinary Voronoi tessellation, defined for a system of
discrete points (atomic centers).29,30 Dashed lines show such an
ordinary cell for the central atom in Figure 1. In 3D, the Voronoi
cell has flat faces and is called a Voronoi polyhedron. Note, the
bisector dividing the space between two centers is a plane. The
points of one half-space are closest to one center, and the points
of the second half-space are closer to the second center. The
intersection of all such half-spaces for a given center gives the
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required Voronoi cell: the points of this intersection are closer to
the given center than to any other center of the system.
However, the distance to an atom can also be measured to the

atomic surface. In this case, the Voronoi cell can be different.
From a mathematical point of view, different distance measures
yield different realizations of the Voronoi tessellation.22

If the distance to an atom (sphere) is measured by the usual
Euclidean measure to its surface (to the closest point), then
the bisector for two atoms of different radii is a quadric surface
(hyperboloid or ellipsoid). Thus, the faces of such Voronoi cells
are not flat in general; see Figure 1a. In this paper, we will call
them Voronoi S-cells (or simply S-cells). The letter S emphasizes
that we deal with surfaces of atoms.51,52 In mathematics, such a
tessellation is also called an additively weightedVoronoi diagram.22

The size of atoms can also be taken into account by using so-
called power (or radical) Voronoi cells22,32,53 (Figure 1b). In this
case, the bisector between two spheres is the radical plane, well-
known in geometry. It is the locus of points having equal power
with respect to two spheres. Here, power is the distance from a
point in space to the point on the surface of a sphere, where the
tangent from the point to the sphere is touching it. We will call
this Voronoi cell a Voronoi P-cell (or simply P-cell). The advan-
tage of the P-cells is that they have plane faces. It facilitates their
calculation and analysis in comparison with S-cells. On the other
hand, the physical meaning of the P-cells is not very clear. Some
points of such a cell are really closer to another atom than to a
given one. The main geometrical properties of the power tesse-
llation are the same as for S-cells and the ordinary ones. Note, for
systems of atoms with equal radii, all of these types of Voronoi
tessellation are identical, Figure 1c.
Irrespective of the type of Voronoi cell, it can be used for the

definition of neighbors. The nearest (geometrical or first topological)
neighbors have a common Voronoi face. They present the first
Voronoi shell around a given atom. The second and following
Voronoi shells can be determined in the same way (Figure 2):
The atoms of the second one are adjacent to atoms of the first
one but not to the central atom. The atoms of the third one are
adjacent to the second one but not to the first, and so on.

In other words, the atoms in the kth Voronoi shell are the kth
topological neighbors of the central atom on the Delaunay net-
work. Remember, intimately connected with the Voronoi tessel-
lation is the tessellation by Delaunay simplexes. The adjacency of
two Voronoi cells defines a Delaunay simplex edge as the line be-
tween these atoms. In two dimensions, Delaunay simplexes are
triangles (see Figure 3b), and in three dimensions, tetrahedra.
Any complex molecule is composed of atoms. The union of

the Voronoi cells of these atoms defines the space assigned to a
given molecule in solution (Voronoi region of the molecule; in
section 3.3, we will identify this volume as the intrinsic volume
Vint of the solute). According to the above considerations, this
can be the ordinary, P- or S-region of the molecule. Figure 3a
illustrates the S-tessellation of a model solution. The solute
molecule is shown as a cluster of dark disks, and the nearest
neighbors are marked in gray. Common faces between discs of
different radii are curved. However, far from the solute, the S-cells
of the solvent molecules coincide with ordinary Voronoi poly-
hedra because all of them have identical radii.
The nearest neighbors of a complex solutemolecule are defined as

above. They are the solvent molecules whose Voronoi cells are
adjacent to the Voronoi region of the solute: gray disks around the
solute in Figure 3. They represent thefirst Voronoi shell of the solute.
In the same way, the subsequent Voronoi shells can be defined.
Apart fromVoronoi cells, one can use also Delaunay simplexes

to describe hydration shells. The vertexes of the simplexes are

Figure 1. Illustration of Voronoi cells of different types: (a) ordinary
cell (dashed lines), S-cell (solid lines); (b) ordinary cell (dashed lines),
radical or power cell (solid lines); (c) in the case of equal atoms, all types
of the Voronoi cells are identical (solid lines).

Figure 2. Illustration of Voronoi shells around a central cell.

Figure 3. (a) Voronoi tessellation of a solution. The solute molecule is
shown by a cluster of dark disks. The first Voronoi shell of the solute is
defined by the set of its geometrical neighbors (gray solvent atoms). The
union of the Voronoi cells of the solute atoms determines the Voronoi
region of the solute molecule (blue lines). The union of Voronoi cells of
the nearest neighbors determines the volume of the first Voronoi shell
(between red and blue lines). (b) Delaunay tessellation of the same
solution. The edges of the Delaunay simplexes are drawn. All atoms of
the first Voronoi shell are vertexes of Delaunay simplexes which also
include atoms of the solute molecule as vertex. These simplexes define
the first simplicial layer around the solute.
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defined by the atoms. Those simplexes, where some of the ver-
texes are atoms of water molecules in the first Voronoi hydration
shell and others are atoms of the solute molecule, represent the
first simplicial layer around the solute (Figure 3b). In a similar
manner, using subsequent Voronoi shells, one can define the
subsequent simplicial layers (see section 3.1.3).

3. RESULTS AND DISCUSSION

3.1. Structure of the Hydration Shell. 3.1.1. Density Distri-
bution. Figure 4 shows the density distribution function F(r) for
water around our solute molecules. The distances r are calculated
from the center of the oxygen of the water molecules to the sur-
face of the nearest heavy atom of the solute molecule (distance to
the center of the atom minus its van der Waals radius σAA/2, so
this differs from the usual atom�atom pair distribution func-
tions). As in the whole paper, for the size of the spheres, rep-
resenting the atoms, we use the Lennard-Jones σ from the sim-
ulation force field. The behavior of F(r) is typical for moderately
hydrophilic walls:50,54 a clear first peak around 0.14 nm, and a
second at about 0.45 nm, followed by damped oscillations.
To calculate F(r), we sum up the masses of the water mole-

cules N(r) in layers of thickness dr at distance r from the mole-
cular surface, and normalize by the current volume dV(r) of the
layers, as in the calculation of ordinary radial pair correlation
function g(r). However, here we deal with nonspherical solute
molecules and layers. Besides, the shape of the molecule is chang-
ing during the simulation. This means that we have to calculate
the value dV(r) explicitly every time. We have done this by
the overlapping spheres construction, discussed in section 3.3.
Naturally, at large distances, the curves in Figure 4 approach the
density of bulk water in the solution at the given temperature.
Figure 5 shows the obtained density of the bulk water for the

Aβ42 solution as a function of temperature. Here, water mole-
cules beyond 0.8 nm from the solvent molecule were referred
to as bulk water. The density approaches its maximum slightly
below 250 K, as is known from pure SPC/E water simulations.55

The mean volume of the water Voronoi cells, ÆVVPæ, for the bulk
water is also presented in the figure. Of course, for a given system
of atoms, this is the reciprocal density. As bulk water consists of
identical molecules represented by oxygen atoms, any type of
Voronoi cells discussed above can be used in this case.
3.1.2. Voronoi Cell Volume Distribution. The dependence of

the Voronoi cell volume of the water molecules as a function
of the distance r from the solute molecule is shown in Figure 6.

S-cells are used here to take into account the different sizes of
solute (heavy) atoms and water (which is represented by the
oxygen). To calculate the Voronoi volume VS at a distance r, we
average over all water molecules whose oxygen atom is found in
the layer between r and r + dr, and then the averaging over con-
figurations of the simulation run was performed, as in the cal-
culations of F(r) in Figure 4. The first peak and following osci-
llations in Figure 6 are much less pronounced than in Figure 4,
and the curves flatten out to the bulk limits at smaller values of r.
Comparing Figures 4 and 6, it has to be kept in mind that the

underlying averaging processes cover slightly different regions:
whereas F(r) reflects the number of water oxygen atoms, found in
small shells, the Voronoi cells of these atoms extend further out
(see discussion in section 3.3). Therefore, the Voronoi cell volume
distribution is smoother, but an overall reciprocal behavior can be
observed. At small distances in Figure 6 (below about 0.2 nm),
the Voronoi cell volumes are smaller than the bulk average.
These molecules belong to the first peak in F(r) of Figure 4,
where a denser packing of themolecules is present, with the water
molecules closest to the solute molecule having the smallest
Voronoi cells. The subsequent region in Figure 6 with positive
deviation from the bulk value comprises water molecules which
extend into the region of the first minimum in F(r), where the
solvent molecules are less crowded.
Figure 7 shows the mean volumes of the Voronoi cells in

successive Voronoi shells (illustrated in Figure 2). Instead of a
continuous variable r, now we have discrete values k for the
sequence of Voronoi shells. The restriction to five Voronoi shells
is due to the fact that the following ones are influenced by the

Figure 4. Water density distribution around the solute molecules hIAPP and Aβ42. Distance is measured to the surface of the nearest heavy atom.
Selected curves are given for temperatures 250, 350, and 450 K.

Figure 5. Density of bulk water in Aβ42 solutions (squares, right axis)
and the mean volume of the Voronoi cells of these water molecules
(circles, left axis).
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periodic boundary conditions of the simulation. The mean
Voronoi cell volume was calculated here over water molecules of
a given shell, and then the averaging over different configurations
of the model was performed. This distribution is even more
smoothed out in comparison to Figure 6.
As one can see, the mean volume of the cells in the first

Voronoi shell is appreciably smaller than in the following ones, in

agreement with the data in Figure 6. In Figure 8, the distance
distribution of the water molecules within the Voronoi shells is
shown. The maximum of the first distribution is positioned at
0.15 nm. This corresponds to the first peak of F(r) in Figure 4, a
shell of dense packing. Accordingly, the maximum of the first
distribution is positioned at the left slope of the curve in Figure 6,
where we localized the smallest cell volumes.
Note, the distribution of water molecules in the Voronoi shells

(Figure 8) is rather broad. There is a substantial overlap between
neighboring shells; e.g., there are many water molecules which
belong to the third Voronoi shell but have a smaller distance to
the surface of the solute molecule than some members of the
second shell. Thus, the Voronoi shell method and the distance
based criteria are not equivalent in selecting solvation shells; they
encompass different sets of the solvent molecules.
A principal feature of the curves in Figure 7 is that they do not

reach the asymptotic values of bulk water; in particular, water
molecules of the third Voronoi shell, located mainly in the inter-
val from 0.6 to 1.2 nm, see Figure 8. At these distances, the dis-
tributions in Figures 4 and 6 have already reached the asymptotic
values, especially at high temperatures. However, themeanVoronoi
cell volume in the third shell exceeds the asymptotic value for
each temperature (compare the horizontal line in Figure 7).

Figure 6. Average Voronoi cell volume of water molecules at distance r from the solute molecule for hIAPP and Aβ42. r is, as before, the distance
between the water oxygen center and the surface of the nearest heavy atom of the solute molecule.

Figure 7. The mean Voronoi cell volume of water molecules in Voronoi shells as a function of the number of the shell for hIAPP and Aβ42 solutions.
Horizontal lines indicate the mean Voronoi cell volume of the bulk water.

Figure 8. Distance distribution of water molecules in successive
Voronoi shells number 1�5 around the hIAPP molecule in solution.
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Moreover, the discrepancies become larger at higher tempera-
tures. This seemingly contradictory behavior is however the
result of a general geometrical property of a mosaic, of Voronoi
tessellation in our case. It is known from general mathematical
considerations that for any nonregular mosaic there is a positive
correlation between the cell volume and the number of its neigh-
bors: the bigger the cell, the larger the number of its neighbors.
This assigns the larger cells a larger weight in the averaging
process andmeans that even in pure liquids the mean value of the
Voronoi cell volume, averaged over a given Voronoi shell around
an arbitrarily chosen molecule (see Figure 2 for illustration), is
not equal to the mean volume calculated over the entire system.
In other words, a shell on a mosaic is not a representative subset
for the calculation of the mean volume of a cell for the entire
mosaic (a detailed discussion of this phenomenon and its corre-
ction can be found in refs 42 and 56). This effect is rather small,
and it does not matter for the selection of neighbor atoms;
however, it should be taken into account in the calculation of
volumetric characteristics; see section 3.2 below.
3.1.3. The Hydration Shell Structure, as Described by Simpli-

cial Layers. The results presented above suggest that our solute
molecules do not change the water structure at larger distances.
Changes can be detected in the nearest surroundings only. In
particular, when we consider the volumetric and geometric char-
acteristics of the Voronoi cells of the water molecules, we find
that only the first Voronoi shell exhibits marked differences from
bulk water. An analysis of the simplicial layers, introduced in
Figure 3b, gives the same results: specific deviations from the
bulk water structure can be found only in the first simplicial layer.
Figure 9 gives the distribution of the inscribed radiiRDS inside the
Delaunay simplexes of consecutive simplicial layers, from the first
to the fourth one, for the hIAPP solution.
A clear deviation is visible for the first layer distributions,

whereas the distributions for the next simplical layers are indis-
tinguishable within the accuracy of our analysis. Obviously, the
divergence of the first simplical layer is largely due to geometrical
reasons: the “hard cores” of the solute atoms impose spatial
restrictions.
As mentioned in conjunction with Figure 3, the simplexes of

the first layer can be distinguished by their vertexes. Each simplex
has four vertexes, and accordingly different species of simplexes
are possible: (i) three vertexes are formed by atoms of the solute
molecule and one by the oxygen of a water molecule, (ii) two
vertexes are solute atoms and two are water oxygens, and (iii) one

vertex is on the solute and three are in water. In other words,
the first simplicial layer can be divided into three sublayers, each
of them consisting of simplexes of type i�iii. We call them
SL1�SL3 accordingly.
Figure 10 demonstrates the distributions of the inscribed

sphere radii for the sublayers of the first simplicial layer L1
shown in Figure 9. There is a significant difference between the
first, second, and third sublayers, the third coinciding with bulk
water. Thus, the distinction of the first simplicial layer from the
others, shown in Figure 9, is caused purely by the special features
of the first and second sublayers.
3.2. Apparent Volume of Solute Molecule. The apparent

volume of the solute molecule,Vapp, is the difference between the
volume of the solution containing a single molecule and the pure
solvent (the partial molar volume of the solute at infinite dilution).
Usually this volume is subdivided into

Vapp ¼ Vint þ ΔV ð1Þ
whereVint is the intrinsic volume of the solute molecule andΔV is
the contribution of the hydration water to the apparent volume,
originating from the density change in the surrounding water,
which is caused by the influence of the solute molecule. Working
with computer models, it is in principle possible to calculate all
mentioned volumetric parameters. However, this is not trivial.
We will calculate the apparent volume by three different methods
and compare the results of a traditional distance based approach
with the results obtained by two variants of the Voronoi�
Delaunay method.
The apparent volume of a solute molecule can be calculated by

Vapp ¼ Vtot � V h
bulk_water ð2Þ

Here, Vtot means the total volume occupied by the solute
molecule and the water molecules in the hydration region, which
includes all water molecules which are influenced by the presence
of the solute. Vh

bulk_water is the volume of the same number of
water molecules in pure (bulk) water. Formulas 2 and 1 are iden-
tical because Vtot = Vint + Vh and ΔV = Vh � Vhbulk_water, where
Vh is the volume of the hydration region.
The traditional approach to define the hydration region im-

plies an outer surface of the region at a distance R from the solute
molecule (Figure 11). Usually this surface is chosen as the locus
of points equidistant from the van der Waals surfaces of the

Figure 9. Distribution of radii RDS of the inscribed spheres of Delaunay
simplexes in different simplicial layers L1�L4 around hIAPP. Red curve,
first layer; symbols, second to fourth layer; black curve, bulk.

Figure 10. RDS - distributions for different sublayers of the first
simplicial layer around hIAPP in aqueous solution. Red, first sublayer;
blue, second sublayer; green, third sublayer; dashed black, Delaunay
simlexes of bulk water.
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atoms of the solute molecule. The total volume inside such a surface
can be calculated as the volume of the union of spheres of corre-
sponding radii RvdW + R, located on the atomic centers of the solute
molecule (where RvdW is the van der Waals radius of the atoms).
As the solute molecule can consist of a large number of atoms

and the corresponding spheres have multiple overlapping, such
calculations are involved and time-consuming. However, this
problem has been treatedmathematically in a general way,24,57�59

and there are several programs available for the calculation of such
volumes.59�61 Here, we used our own software, which is rather
fast and robust.62 This is important when analyzing thousands of
molecular dynamic configurations for a series of R values each.
To determine Vapp according to eq 2, the total volume Vtot(R)

was calculated for a sequence of R values from 0 to 1.2 nm with
steps of ΔR = 0.02 nm. The number of water molecules inside
every R-surface Nh(R) was counted, and the value of Vhbulk_water
for each hydration region was estimated as

V h
bulk_water ¼ NhðRÞv0 ð3Þ

where v0 is the mean volume occupied by a water molecule in
bulk water.
Figure 12 (solid black line) illustrates for the case of the Aβ42

molecule in solution at 300 K the dependence of the obtained
apparent volume as a function of the distance R. A strong first
peak and the following oscillations of this function show simi-
larity to Figure 4, where the density distribution function F(r) is
presented. The other temperatures show an analogous behavior.
The required value of the apparent volume corresponds to the
asymptotic value of this function, which is reached after about
0.8 nm in this case. Strong deviations of the function from the
asymptotic value for smaller R reflect the structure of the hydra-
tion region and are not related to the real apparent volume.
These oscillations can be an origin of error if one choses an
inappropriate value of R. In particular, the error for the apparent
volume will be approximately 6% of the real value if we take R =
0.4 nm. On the other hand, to use larger values of R is also not
advisible, because of an increase of inaccuracy (see error bars),
which is due to the fact that the apparent volume is calculated as
the difference between two large numbers, which are growing fast
with R, see eq 2. The apparent volume also fluctuates strongly
with time; obviously, it is sensitive to the conformation of the
solute molecule. (Fluctuations of the radius of gyradion RG and
the SAS area have been analyzed in ref 21.) Standard deviations
of the calculated values of Vapp are shown by vertical lines in
Figure 12.
Figure 12 shows also the apparent volume calculated in a

different way. Using the same R-surfaces around the solute, we
estimated the volume Vtot(R) as the sum of the Voronoi cells of
all atoms, whose centers lie inside this surface, i.e., of the solute
molecule and of the hydration water molecules (illustrated in
Figure 13). This method for estimation ofVtot is reasonable, as by
definition a Voronoi cell represents the volume assigned to a
given atom. Thus, the calculated sum is the volume assigned to all
atoms inside the R-surface. The corresponding volume of the
hydration water molecules in pure water was calculated as in eq 3.
The coincidence of the asymptotic values of both curves in

Figure 12 emphasizes the accuracy and reliability of our calcula-
tions. One can see an obvious advantage of the second method in
comparison with the traditional one: there are no strong oscilla-
tions inVapp(R), and the asymptote is reached sooner. In particular,

Figure 11. Illustration of the hydration region around a solute mole-
cule, selected by a distance based (DB) criterion. Outer border is the
surface of the union of spheres which are located on the atomic centers
of the solute molecule and have radii RvdW + R (RvdW: atomic van der
Waals radius). Dashed line shows the surface at a distance R, which is
equal to the radius of the solvent molecule (the so-called “solvent
accessible surface” SAS).

Figure 12. Apparent volume of Aβ42 in water as a function of R
(extension of the hydration region). The black line was calculated by the
traditional approach, using a DB criterion (Figure 11). The blue line was
calculated using the DB criterion in combination with the volumes of the
Voronoi cells (Figure 13). The lower dashed horizontal line indicates the
van der Waals volume of the solute molecule (R = 0). The upper dashed
horizontal line corresponds to the Voronoi volume of the molecule
(here: sum of molecular Voronoi S-cells). Vertical lines show the
standard deviation of the calculated values.

Figure 13. Estimation of the volume Vtot(R) inside a hydration region
around a solute molecule with the help of Voronoi cells: summing the
Voronoi cell volumes of all atoms, whose centers lie inside the shell,
including the solute and solvent molecules (Voronoi cell summation
with DB criterion).
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even with R = 0.2 nm, the deviation of the apparent volume from
the asymptotic value is less than 2% (Figure 12). This advantage
is explained by the fact that each water molecule contributes to
the shell with its full volume. This damps the oscillations, which
originate from the behavior of F(r).
Third, we calculate the apparent volume using the construc-

tion of Voronoi shells around the solute molecule; thus, instead of
a continuous variable R, we consider now a discrete number of
shells k. The value Vtot(k) is defined as the average value of the
sum of the Voronoi volumes of the water molecules in the
Voronoi shells from the 1st to the kth one plus the Voronoi
volume of the solute molecule itself. At first glance, the volume
Vh

bulk_water of the same number of water molecules in the bulk
can be calculated as in eq 3: as product N(k) 3 v0, where N(k) is
the average number of water molecules in the k Voronoi shells.
However, as already mentioned in section 3.1.2, we have to take
into account the fact that the mean volume of a Voronoi region in
the bulk is not equal to the product of the mean number of
Voronoi cells in the region N(k) times the mean cell volume v0
calculated for the entire system. The mathematical origin of this
phenomenon was discussed elsewhere:42,56 there is a correlation
between cell volume and number of its neighbors in any disorde-
red mosaic, which should be taken into account when calculating
Vh

bulk_water.
A semiempirical method to take this phenomenon into

account was proposed in ref 42: A correction factor γk for each
Voronoi shell can be determined. The factor γk takes into acco-
unt characteristic geometric parameters of the kth Voronoi shell,
namely, the numbers of outer and inner Voronoi faces of the
shell, fk and fk�1. Those can be easily calculated at the determina-
tion of the shells. As a result, to calculate the subtrahend volume,
eq 3 is replaced here by Vhbulk_water = (n1γ1 + n2γ2 + ... +
nkγk) 3 v0. nk is the average number of water molecules found in
Voronoi shell k. Figure 14 shows the apparent volume as a
function of the number of included Voronoi shells for Aβ42 at
300 K. The values with and without consideration of the dis-
cussed correction are shown. The difference between the curves
is not very large (3% for k = 3), but it should be taken into
account, because the magnitude of the volume difference ΔV
between apparent and intrinsic volume is also of the order of a
few percent only.

It seems that the mentioned property of the mosaics does not
appear if we average the volume of Voronoi cells selected by the
DB criterion (Figure 12). The Voronoi cells at a distance R can
belong to different Voronoi shells; thus, a correlation between
topology andmetric of the Voronoi cells will not be so important.
Figure 15 shows the apparent volume of the Aβ42 molecule in

aqueous solution as a function of temperature, calculated by all
three methods discussed. The first and the second give practically
the same values for the full temperature interval. The last one
(with the corrections) gives also a reasonable agreement at low
temperatures. However, differences become visible with increas-
ing temperature.
3.3. Intrinsic Volume of the Solute Molecule. The determi-

nation of the intrinsic volume of biomolecules has been discussed
in computational molecular biology for a long time.2,39 There is
not a unique solution: if we use a pure DB criterion, the result
depends on the definition of the border between solute and
solvent. As discussed in section 3.2, usingR = 0, the van derWaals
volume of the solute molecule is obtained. Another possibility is
to use for R a value equal to the radius of the solvent molecule;
this yields the volume inside the well-known solvent accessible
surface SAS (Figure 11).
The Voronoi�Delaunay method seems to offer a well-

defined solution of the problem. Although there is a lack of uni-
queness, because there are different types of Voronoi tessella-
tions (section 2.2), for volumetric problems, the S-tessellation
apparently is the most suitable one. In this case, the volume assi-
gned to each atom is defined in the most natural way. Power
tessellation can be considered as a good approximation. It can be
easily calculated and processed because power cells have flat faces
unlike the S-cells. An ordinary Voronoi tessellation does not take
into account the radii of the atoms and can be used for molecular
systems only as an auxiliary geometrical tool.
In this paper, we use Voronoi S-tessellation and calculate the

intrinsic volumeVint as the sum over the S-cells of all atoms of the
solute molecule. Thereafter, the contribution of the hydration
waterΔV can be obtained easily as the difference of Vapp and Vint
according to eq 1. Figure 16 summarizes the obtained volumetric

Figure 14. Apparent volume of Aβ42 in aqueous solution, calculated by
summing over an increasing number of Voronoi shells. Full squares,
without corrections; empty squares, with corrections (see text). The
horizontal line indicates the asymptotic value of the apparent volume in
Figure 12. The volume of shell number zero corresponds to the intrinsic
volume of the solute molecule (section 3.3).

Figure 15. Apparent volume of Aβ42 as a function of temperature
calculated by different methods: crosses, traditional method with DB
criterion; circles, Voronoi volumes with DB criterion; squares, summa-
tion over Voronoi shells.
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parameters (apparent and intrinsic volumes and contribution of
hydration water) for the Aβ42 and hIAPP molecules as a func-
tion of temperature.
The apparent volumeVapp shown in Figure 16 was determined

as the asymptotic value (for large R) of the sum of Voronoi cell
volumes within a given DB cutoff (see section 2.2 and Figure 12).
Remember, it coincides with the result of the traditional methods
(Figure 15). One can see that the apparent volume increases with
temperature. From a logarithmic plot of Vapp, we determined
the thermal expansion coefficient dlnV/dT. As in the study of
Brovchenko et al.,21,64 we observe a kink at about 320 K. The
slopes below and above this temperature are 0.94 � 10�3 and
0.77 � 10�3 K�1, respectively, for hIAPP and 1.15 � 10�3 and
0.69� 10�3 K�1, respectively, for Aβ42. The latter values are in
good agreement with those obtained in ref 21.
The intrinsic volume Vint of both molecules is greater than

their apparent volume by about 10% for all temperatures. As for
Vapp, the coefficient of thermal expansion of Vint is also positive
for both molecules and shows a (less pronounced) kink in the
temperature dependence at about 320 K. Note, if one considers
the van der Waals volume as the intrinsic volume of the solute, it
does not change with temperature and has a much lower value
than the apparent volume (by about 30% for Aβ42 at 300 K, as
shown in Figure 12).
Figure 16 shows the contribution ΔV, calculated as the

difference of the apparent and intrinsic volumes. It is negative
for our models, and the absolute value decreases with temperature.
It has a positive slope, and the main change is observed in the
temperature interval up to 320 K. There are at least two distinct
structural reasons for this negative value of ΔV: electrostriction
close to charged groups and a “filling” of the open structure
(voids) of water65,66 by the nonpolar side groups. A shrinking of
the free volume in the first simplical layer around the solute mole-
cule can be seen clearly as a pronounced shift of the distribu-
tion of the inscribed radii RDS inside the Delaunay simplexes

(Figures 9 and 10). This has to be studied in more detail in
future work.
Here we face strong and qualitative differences compared to

the results, obtained in a previous analysis of the same simulation
runs for the Aβ42 solution: in ref 21, positive values for ΔV, and
intrinsic volumes Vint, which are decreasing with temperature,
thus showing negative intrinsic thermal expansion coefficients,
were obtained. We explain these discrepancies by the two largely
differing approaches to calculate these properties: whereas we
calculateVapp andVint directly from the simulation run via Voronoi
constructions and get ΔV as the difference of these two data, in
ref 21, ΔV is calculated from the density of the hydration shell
water. This is determined by counting the water molecules within
some distance D from the heavy atoms of the solute mole-
cule (the assumed hydration shell) and dividing this number by
the volume of the hydration shell, which is estimated as VD =
SASA 3 (D� solvent radius). As one can easily imagine, this latter
step overestimates the appropriate volume when the chain is not
stretched out, leading thus to a decreased density and thus to a
positive volume contribution ΔV. Using our approach, based on
the union of spheres, as discussed in conjunction with Figure 11,
a more correct value of VD could be obtained as the difference
between the volumes of the overlapping spheres, indicated
schematically by the full and dashed black lines in Figure 11.
Chalikian et al.2 suggested to dissect changes in partial specific

volume, and hence in the expansion coefficientα of a protein into
essentially three different contributions: (1) the intrinsic volume,
Vintr, which originates from the van der Waals volume of the con-
stituent atoms plus the volume of intrinsic voids within the water-
inaccessible protein interior, (2) a hydrational term, δVhydr, also
denoted “interaction volume”, describing—with regard to the
bulk solvent—changes of the solvent volume associated with the
hydration of solvent-accessible protein atomic groups, i.e., from
solute�solvent interactions around the charged (electrostriction),
polar (hydrogen-bonding), and nonpolar (hydrophobic hydration)

Figure 16. Intrinsic and apparent volumes and the contributionΔV of the hydration water for hIAPP and Aβ42 molecules as a function of temperature.
Intrinsic volume: sum over the S-Voronoi cells of all atoms of the solute molecule. Apparent volume: asymptotic value from summation of Voronoi cells
within the DB criterion (section 3.3).ΔV: difference Vapp� Vint. Empty symbols:Vscc, show the apparent volume calculated by the empirical amino acid
side-chain contribution method of Haeckel et al.63 (As emphasized by these authors, the parameters for Vscc had been determined for the limited
temperature range 280�360 K and have to be considered less reliable outside.)
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atomic groups on the protein surface, and (3) the thermal
volume, Vtherm, which results from thermally induced mutual
molecular vibrations and reorientations of the solute and the
solvent. The effect of the thermal volume is to expand the
solvent away from the surface of the protein, such that solvent-
free volume elements form around the protein. Altogether, one
obtains V≈ Vintr + δVhydr + Vtherm. In our approach, the thermal
volume Vtherm is not appearing explicitly but partitioned between
Vint and ΔV. Vtherm is considered to increase with temperature,
leading to a positive contribution to the thermal expansion co-
efficient α, and hence to positive slopes of Vint and ΔV, as ob-
tained from our calculations.
It is interesting to note that, despite the strong differences in

ΔV and Vint between our results and those presented in ref 21,
the values for Vapp, although obtained in very different ways in
both studies, coincide closely. In ref 21, Vapp has been calculated
simply as the volume difference between two simulation runs
with and without one Aβ42 molecule. This agreement supports
the reliability of both approaches, when calculating the “experi-
mentally accessible” property Vapp. The difficulties are in fact in
the partitioning of the contributions ΔV and Vint.
The apparent volume Vapp, obtained from the simulations, can

be reproduced quite well by an empirical approximation, which
allows a simple estimation of the partial molar volumes of poly-
peptides from the side-chain contributions of the primary amino
acid sequence;63 see empty circles in Figure 16. These values Vscc

are calculated via eq 16 of ref 63 (with eqs 8, 17, and 18), applying
the parameters from Tables 1 and 3 there. The parameters have
been obtained by Haeckel et al. from partial molar volumes of
tripeptides glycyl-X-glycine, measured in the temperature range
from 280 to 360 K for all 20 amino acids X. In principle, this
approach can only be applied to elongated chains. The coiling of
the chains in the simulations leads to an increase of Vapp com-
pared to Vscc: when there are close contacts between side chains,
hydration water with a negative contribution to Vapp is eliminated
and Vapp increases, as can be seen in Figure 16. From the results
of section 3.1.3, we can deduce that these contacts are efficiently
influencing the volumetric properties only, when these contacts
are close: the influence of the solute on the volumetric properties
of the hydration water is restricted to the closest two simplicial
sublayers; thus, no extended hydration shells are needed to
develop fully the influence of the solute on the volumetric pro-
perties of the hydration water. In other words, we expect from
our results that coiling or aggregation is visible only when direct
contacts between side chains are present. This is in agreement
with the results of a recent molecular dynamics study on the
pressure denaturation of a protein:68 these authors observed that,
once the protein is sufficiently water swollen, the partial molar
volume of the protein appears to be insensitive to further confor-
mational expansion or unfolding. Another aspect of the negative
sign of ΔV is furnished via Le Châtelier’s principle: increasing
pressure will favor less direct contacts and hence dissociation of
protein aggregates. This is in fact observed experimentally.67

Clearly, the agreement between Vapp and Vscc is much better
for Aβ42 than for hIAPP. This is only fortuitous for the following
reasons: in the simulations, Aβ42 contains six side chains with
full charge�1e. As Haeckel et al. explain, in their measurements,
which are used for the determination of the parameters for the
residues D and E, these residues are only partly ionized. As these
authors point out further, neutral side chains would lead to larger
volumes; correspondingly, we conclude that side chains with
charge �1e lead to smaller volumes in the simulations and this

brings the data forVapp andVscc into closer agreement. The nega-
tively charged residues D and E are missing in hIAPP.

4. CONCLUSIONS

In this paper, we examined the applicability and the advantages
of the Voronoi�Delaunay method to study the volumetric pro-
perties of large hydrated biomolecular systems such as proteins
on the basis of simulation models. We apply this method to
analyze the trajectories of molecular dynamics simulation runs of
hIAPP and Aβ42, two polypeptides of high relevance for under-
standing the amyloidogenesis of peptides in aqueous solution.
Voronoi tessellations are calculated on the basis of all heavy
atoms of the model systems (excluding hydrogen). Both power
(radical) tessellation and Voronoi S-tesselation (additively weighted
in mathematical notation) were used to take into account the van
derWaals radii of the atoms. The former one is easier to calculate,
the latter has a more clear physical meaning of the volume assi-
gned to the atoms.

One problem, which is arising in the investigation of hydration
shells, is the assignment of neighboring or hydration water mole-
cules around the solute. Usually this is done by using a distance
based criterion, i.e., by selection of themolecules within the limits
of some reasonably chosen distance R from the solute. The
Voronoi�Delaunay method gives a nonambiguous alternative
approach. It defines the neighbors without any auxiliary para-
meters. Moreover, it provides a clear-cut method to select suc-
cessive shells of the solventmolecules around the solute (the first,
second, and following Voronoi shells). Using Delaunay tessella-
tion, which is dual to the Voronoi one, it is possible to yield an
even more detailed resolution of the environment of a sol-
ute molecule. Delaunay simplexes allow the division of every
Voronoi shell into Delaunay sublayers. The analysis of consecu-
tive Voronoi shells demonstrated that the essential volumetric
difference between hydration water and bulk water is observed
only in the nearest neighborhood of the solute, practically in the
first two Delaunay sublayers of the first Voronoi shell.

To calculate the apparent volume of the solute molecule, one
has both to specify the hydration water and to calculate its
volume. Different methods for the determination of the apparent
volume were tested: (i) a traditional one, using an exclusively
distance based criterion, (ii) a combination of a distance-based
criterion with Voronoi cells, and (iii) using Voronoi shells on the
Voronoi tessellation. Some computational aspects of the meth-
ods were discussed. We could show that all of them give prac-
tically the same results if they are used correctly. However, from
our experience, method ii should be preferred, as it shows fast
convergence and is less prone to the influence of Voronoi cell
volume correlations within the Voronoi mosaic, which has to be
corrected subsequently.

To decompose the apparent volume into the intrinsic volume
and the contribution of the change in the hydration water
density, we determined the intrinsic volume Vint by the Voronoi
approach. In the frame of the traditional, purely distance based
method, there is some arbitrariness concerning the localization of
the border between solute and solvent. In the frame of the
Voronoi�Delaunay method, the intrinsic volume of the solute
molecule can be defined as the Voronoi volume of the molecule,
i.e., the sum of the Voronoi cells of all atoms of the solute mole-
cule. We used the Voronoi S-tessellation which seems more
appropriate for the assignment of individual volumes to atoms
with different van der Waals radii. We found that the intrinsic
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volume of both solute molecules is greater than their apparent
volume by about 10%. This means that the contribution of the
hydration water is negative, and the surrounding water is denser
than in the bulk.

Our results have been compared with the quasi-experimental
side chain contribution data of Haeckel et al.63 for elongated
peptide chains. A reasonable agreement demonstrates the relia-
bility of our calculations. The observed differences could be ex-
plained by the coiling of the chains and the resulting geometric
contacts between the residues. This indicates also the sensitivity
of volumetric studies and helps to understand the pressure dena-
turation of proteins and the pressure dependence of the partial
molar volumes.

Our results were obtained by averaging over a large number of
configurations of the simulation runs. We could see that the volu-
metric characteristics vary strongly with the shape of the solute
molecule. Different residues of the peptide chain have a different
influence on the surrounding water, and this influence is mod-
ified by fluctuating interactions between them. Such questions
have to be studied in detail in subsequent work. We may expect,
in the near future, that this method will show its great potential
also in studies of proteins involved in folding and intermolecular
interactions, which are largely controlled by hydration effects.13
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