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We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such
particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the
corresponding rate constant of their aggregation has not yet been established in a convenient an-
alytical form. Using kinematic approximation for the diffusion problem, we derived an analytical
formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters)
with several small active sites under the following assumptions: the relative translational motion is
Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and ar-
bitrarily correlated. This formula was shown to produce accurate results in comparison with more
sophisticated approaches. Also, to account for the case of a low number of active sites per parti-
cle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that
such discrete model is required when this number is less than 10. Finally, we applied the developed
approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal
structure. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892163]

I. INTRODUCTION

Aggregation of colloids has been the subject of exten-
sive theoretical and experimental studies due to its direct rel-
evance to several natural processes and technological appli-
cations. Recently, colloidal particles with several active sites,
so-called “patchy particles,” attracted a considerable amount
of interest in many applications, allowing fine tuning the di-
rectionality of the interactions for material design.1 However,
the kinetics of patchy colloids (or “functionalized colloids”)
aggregation and self-organization are still largely unexplored.
Unfortunately, in the general case of arbitrary number of ac-
tive sites with arbitrary geometry, modern sophisticated the-
oretical expressions for the aggregation rate of patchy parti-
cles are extremely lengthy and cumbersome (due to chemical
anisotropy of the reactants), that is not convenient for treating
the experimental data. The aim of the present work is there-
fore to derive an analytical solution, which give a simple way
of calculating the rate of such sterically specific reaction with
high accuracy in the most general case.

Generally, the aggregation kinetics is described theoret-
ically by the time evolution of the clusters size distribution
Cn(t) (concentration of clusters of n monomers) using Smolu-
chowski rate equations2

dCn

dt
= 1

2

∑
i+j=n

kijCiCj − Cn

∞∑
i=1

kinCi. (1)

a)Author to whom correspondence should be addressed. Electronic mail:
chern@ns.kinetics.nsc.ru. Tel.: +7 383 3333240. Fax: +7 383 3307350.

The kernel kij represents the rate constant of the bind-
ing of i-mer with j-mer. Experimentally, the aggregation in
colloids can be studied by an optical method to measure the
clusters size distribution3 and to evaluate the aggregation rate
constant.4

Two distinct classes of aggregation regimes have been in-
vestigated. One class is diffusion limited aggregation (DLA),5

which corresponds to a reaction occurring at each encounter
between clusters. The well-known formula for the rate con-
stant kD of a pure diffusion-controlled binding of two chemi-
cally isotropic spherical particles is

kD = 4πRD, (2)

where R = R1 + R2 is the sum of the reactants radii and
D = D1 + D2 is the sum of the reactants diffusion coeffi-
cients. The other class is reaction limited aggregation (RLA),6

where the reaction rate kr is determined by the probability of
forming a bond upon collision of two clusters. In a general
case the rate constant k is often7 expressed by the following
approximation:

k =
(

1

kD

+ 1

kr

)−1

. (3)

Biospecific aggregation, such as immunoagglutination,8

is a particular case of aggregation. Biologic macromolecules
are capable of sterically specific (chemically anisotropic)
binding with particular ligands.9 The reactants can bind to
each other only at certain discrete reactive spots (active sites),
which are relatively small comparing to the size of reactants.
Therefore, one can expect significant steric factor for aggre-
gation kinetics, since specific binding sites occupy a rather
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small surface fraction of a particle. It is generally believed that
the activation energy for the association reaction between lig-
and and receptor is rather low. Therefore, the reaction rate of
biospecific aggregation can be calculated in the diffusion lim-
ited regime taking into account a steric factor, which reduces
the DLA rate constant. For example, the DLA rate constant
of binding of chemically isotropic ligands with a chemically
anisotropic spherical particle covered by receptors can be ap-
proximately expressed by the following formula:10

k =
[

1

kD

+ 1 − p

4DaN

]−1

, (4)

where p is the fraction of the particles surface covered by re-
ceptors binding sites, a is the size (radius) of the binding site,
N is the number of binding sites on the particle. Equation (4)
is formally similar to Eq. (3) that often leads to interpretation
of sterically specific DLA as “pseudo-RLA.” Pseudo-RLA
can be distinguished experimentally from pure RLA due to
its strong dependence on the viscosity of the media (through
the diffusion coefficient). Discrimination of sterically specific
DLA from pure RLA is very important for the determination
of the binding site characteristics (size, shape, etc.) and the
number of binding sites (receptors) on the particle from ex-
perimental data, as well as for the theoretical simulation of
the aggregation kinetics.

It should be noted that the reaction-diffusion problem of
chemically anisotropic reactants in condensed phase received
considerable theoretical attention.10–17 In a general case it is
convenient to introduce an effective factor F ≤ 1 which de-
scribes the reduction of the reaction rate compared to the pure
DLA:

k = 4πRDF. (5)

The problem can be formulated as follows: given the
structural characteristics of the reactants, determine the ef-
fective factor F for diffusing and rotating molecules. Here
we will always consider rotational diffusion as a Markovian
stochastic reorientation process of sufficiently large particle in
dense media.14 For simplicity, both reactants are considered
spherical (Fig. 1). The rate of diffusion-controlled reaction on
binding sites exhibit quite unexpected behavior, caused by the
cage affect (every encounter of two reactants consists of nu-
merous recontact collisions). For example, if the first reactant

FIG. 1. Spatial configuration of two chemically anisotropic reagents.

is a spherical particle with one small circular reactive spot on
its surface with steric factor (surface fraction) f � 1 and the
second reactant is a spherical particle with isotropic reactivity,
the forward rate constant of the binding is, counterintuitively,
proportional to

√
f but not to f.7, 13 Only at f ∼ 1 the binding

rate constant becomes proportional to f. However, the general-
ization of this result to chemically anisotropic reactants, based
on the equation for diffusion in multidimensional space (in-
cluding angular variables of both particles) with correspond-
ing boundary conditions, remains a severe mathematical prob-
lem even for numerical methods.18, 19 This fact has stimulated
an active search for physical approximations that could fur-
ther simplify the problem.13, 20 The most promising approach
is based on the “kinematic approximation,”13, 14, 17, 21 which
allows the rate constant to be calculated from the motion pa-
rameters in the configuration space of the nonreactive partners
under the assumption that the thickness of reaction zone (i.e.,
maximum distance between the particles when the reaction
occurs) is � � R.

If each reactant has a reactive spot (with the steric fac-
tor fi from 0 to 1), the applicability of the kinematic approx-
imation has been mathematically substantiated,13 giving the
expression

k = V/τ, (6)

where V is the reactive zone volume:14

V = 4πR2f1f2�. (7)

Here f1 and f2 are steric factors of the first and second
reactants, correspondingly, and τ is the total residence time
of the system representation point inside the reactive zone:14

τ =
∫

q∈V

∫
q0∈V

G(q; q0)dq0dq

/∫
q0∈V

dq0, (8)

where G(q; q0) is the Green function of stochastic motion
of the reactants. In Eq. (8) integration is performed over
the complete set of configurational variables q, and averag-
ing goes over their initial values q0 within the reaction zone
(Fig. 1). Unfortunately, in the case of two anisotropic reac-
tants, the Green function G(q; q0) is fairly cumbersome14 and
demands certain numerical efforts that force researchers to
use more simple approximations (e.g., the so-called quasi-
chemical approximation12, 19, 22) to compute the rate constant
with significantly lower accuracy. Therefore, a proper analyt-
ical (simple) expression which approximates the rate constant
obtained numerically with Eqs. (6)–(8) for a particular appli-
cation without essential loss of accuracy is still required in
order to make the kinematic approximation more applicable
in practice. In this paper we derive such an expression for the
case of two spherical anisotropic reactants.

Another important question concerns the reactive spot
shape available for the approximation represented by
Eqs. (6)–(8) in the framework of the kinematic
approximation.17 The precision of the kinematic ap-
proximation was shown13 to be good for the case of one small
circular reactive spot on the first spherical reactant and the
isotropic reactivity of the second reactant, since the inverse
diffusion problem can be analytically solved only in this case.
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Then the applicability of the kinematic approximation was
extended to the reactive spot of arbitrary shape.14, 17 However,
recent publication15 on “multi-spot” reactants raised the
question on the limits of the spot shapes suitable for the
kinematic approximation. In that publication15 the authors
considered the case of several reactive spots on the first
reactant and the isotropic reactivity of the second reactant.
Obviously, this case can be considered as a single reactive
spot of arbitrary shape, specifically the “multi-spot shape.”
But the authors considered this case differently applying the
following expression for the rate constant instead of Eq. (6):

k =
∑

i

∑
j

Kij , (9)

where matrix K is the inverse matrix of G:

K = G−1, (10)

Gij = 1

�i�j

∫
�

i

sin θidθidϕi

∫
�

j

G(θi, ϕi ; θj , ϕj ) sin θj dθj dϕj ,

(11)
where i and j are the indexes of the reactive spots on the
anisotropic reactant, θ i and ϕj are the spherical angular vari-
ables within the solid angle �i of the spot i (see Fig. 1). Ob-
viously, the results of Eqs. (6) and (9) are generally different.
One can argue that the difference is due to the assumption
of the connected spot, inherent in Eq. (6). However, there is a
simple counter-evidence: it is possible to add infinitely narrow
connected strips (of reactive area) between the spots to make
the whole shape connected with no effect on the rate constant.
Thus, the open question appeared is the following: how much
is the difference between the results of the Eqs. (6) and (9) for
the “multi-spot” shape? In this paper we numerically compare
these two methods and show that the difference is not much
and is negligible for many applications. Also, we compare
the results of Eqs. (6) and (9) with literature data on numeri-
cal stochastic motion simulations23 and also with known an-
alytical formulas10, 16 for the case of “isotropic”– “multispot
anisotropic” pair. Unfortunately, to the best of our knowledge
there is no similar analytical approximate formula in the gen-
eral case of anisotropic-anisotropic pair for the rate constant
depending on the number and size of reactive spots on both re-
actants of different radii. Such formula would be very useful
to simulate the kinetics of biospecific receptor-mediated ag-
gregation with Eq. (1). Simple analytical expressions for rate
kernels of Smoluchowski equation should increase the speed
of computation of the clusters population dynamics. More-
over, rapid computation of such direct kinetic problem is very
important to be able to solve the inverse problem (e.g., to find
the size of the reactive spots from the experimentally observed
dynamics of the colloid population) in reasonable time.

In this paper we suggest an approximate analytical for-
mula for the diffusion controlled rate constant in the case
of the “multispot-multispot” pair of reactants. We always as-
sume that all spots have the same size, and the spot size is
much less than the distance between spots. Applying Monte
Carlo approach, we also show the specific behavior of the ag-
gregation kinetics curve, caused by discreteness of receptors,
i.e., due to a finite number of them on a single particle.

II. ISOTROPIC-ANISOTROPIC PAIR

Let us first consider the case when the first reactant of
radius R1 is chemically isotropic and the second reactant of
radius R2 is chemically anisotropic with N small identical re-
active circular spots of the radius a � R and the steric factor
f � 1 on its surface. Here and further the steric factor
is defined for a single spot. A few analytical approximate
formulae for the diffusion controlled rate constant10, 16 sup-
ported by Brownian dynamics numerical simulation method
of Northrup23 are known in the literature for this case:

(1) Berg and Purcell equation:16

k =
[

1

4πRD
+ 1

4DaN

]−1

. (12)

(2) Zwanzig equation:10

k =
[

1

4πRD
+ 1 − Na2/(4R2)

4DaN

]−1

. (13)

We applied two variants of the kinematic approxima-
tion to calculate the rate constant neglecting rotational diffu-
sion: (1) single-spot approach13 by Eq. (6) and (2) multi-spot
approach15 by Eq. (9), using the following Green function13

of the external Neumann problem for a sphere with radius R
with implicit assumption � � R:

G(θi, ϕi ; θj , ϕj ) = 1

4πRD

{ √
2√

1 − cos γ

− ln

[
1 +

√
2√

1 − cos γ

] }
, (14)

cos γ = cos θi cos θj + sin θi sin θj cos(ϕi − ϕj ). (15)

We found (see an example in Fig. 2 for f 1/2 = a/2R
= 0.0314) that both variants of the “kinematic approxima-
tion” give similar results, which are close to the known analyt-
ical formulas for the rate constant in the isotropic-anisotropic
case. This result supports the traditional assumption of the ar-
bitrary (even “multi-spot”) shape of the reactive zone avail-
able for the rate constant calculations by the “kinematic
approximation.”

Let us, however, investigate this issue in more details. For
a single spot the factor F can be presented for this case as
follows:14

F = [
1 + F−1

2

]−1
, (16)

where F2 is the factor, accounting for the chemical anisotropy
of the second reactant, i.e., it corresponds to the very small
reactive zone. By contrast, term “1” corresponds to large spot,
up to the whole spherical surface. For a small circular spot F2
is equal to14

F
(1)
2 = 3π

16
f 1/2, (17)

where superscript (1) in F
(1)
2 denotes single-spot case.

Let us now consider the reactive zone as an ensemble of
circular spots of equal sizes, much smaller than the distance
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0.8
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 Berg et al., Eq. (12)

Northrup et al.,
numerical simulation

 Doktorov et al., Eq. (6)

 This work, Eq. (16)

k 
/ 4

πR
D

N

 Zwanzig et al., Eq. (13)

 Ivanov et al., Eq. (9)

FIG. 2. The rate constant calculation by different methods for the isotropic-
anisotropic case at f 1/2 = a/2R = 0.0314.

between spots. Then one can split the integral over the Green
function in Eq. (8) into self- and cross-terms leading to
the following expression for the rate constant (according to
Eq. (6)):

1

k
= 1

V 2

∫
q∈V

∫
q0∈V

G(q; q0)dq0dq

= 1

V 2

N∑
i,j=1
i �=j

Gij + 1

V 2

N∑
i=1

Gii, (18)

where V = NVi = N�iR
2�. Since the small reactive spots

are randomly spatially distributed on the spherical surface,
one can estimate the average (over all possible spatial loca-
tions of the spots on the surface) value of the first term of
Eq. (18) through the integral of the Green function over the
whole spherical surface (taking into account the definition of
the Green function):〈

1

V 2

N∑
i,j=1
i �=j

Gij

〉
= N (N − 1)V 2

i

V 2

1

4πR

∮
G(q; q0)dq

= (N − 1)

N

1

4πRD
≈ 1

4πRD
. (19)

The second term of Eq. (18) can be represented through F2
factor as follows:

1

V 2

N∑
i=1

Gii = 1

4πRD
F−1

2 (20)

that leads to expression (16) mentioned above for the steric
factor F. One can see that the sum over cross-terms and self-
terms in Eq. (18) corresponds to 1 and F2 in Eq. (16), respec-
tively. If only self-terms are considered, the problem scales
down to that of a single spot:

F2 = NF
(1)
2 = 3π

16
Nf 1/2. (21)

This correspondence is rigorous when Nf 1/2 � 1 – then
the sum over cross-terms can be neglected and F2 ≈ F because

0 20 40 60 80 100

0.10

0.15

0.20

0.25

 Doktorov et al., Eq. (6)

 Berg et al., Eq. (12)
 This work, Eq. (16)

 Zwanzig et al., Eq. (13)

 Ivanov et al., Eq. (9)

Northrup et al., numerical simulation

k 
/ 4

πR
D

N

N

FIG. 3. Same as Fig. 2 but for N<100 and with additional normalization of
k by N.

they are both much smaller than 1. The system is then in the
pseudo-RLA limit and reactive spots are independent. Thus,
the total rate constant is the sum of N partial rate constants
on individual spots. One can see in Fig. 2, that combination
of Eqs. (16) and (21) provides a good approximation of the
total rate constant in the wide range from the extreme case of
strong anisotropy to the case of a pure isotropy of the second
reactant. Moreover, it better agrees with Ivanov et al.15 for
small N than other analytical approximations (Fig. 3). The re-
maining difference (even for N = 1) is due to the approximate
Eq. (17) in contrast to the exact evaluation of Green-tensor
integral by both Eqs. (6) and (9).

Another implication of assumption Nf 1/2 � 1 is that
matrix G and, hence, matrix K are diagonally dominant; cf.
Eq. (18). This, in turn, implies equivalence of Eqs. (6) and (9)
in this regime, which is also supported by Fig. 2.

Finally, Eq. (21) can be further modified by accounting
for the rotational diffusion (both the rotational and transla-
tional frictions are of the Stokes type). This is implemented
by an additional multiplicative factor14

F2 = 3π

16
Nf 1/2

(
1 + 3R1

4R2

(
1 + R1

R2

))1/2

, (22)

where R1 and R2 are radii of isotropic and anisotropic reac-
tants, respectively.

III. ANISOTROPIC-ANISOTROPIC PAIR

In this case the first reactant of radius R1 has N1 small re-
active circular spots of equal steric factor f1 � 1 and the sec-
ond reactant of radius R2 has N2 small reactive circular spots
of equal steric factor f2 � 1. To the best of our knowledge, the
case of the anisotropic-anisotropic pair of multi-spot reactive
zones on both reactants has not been discussed in the litera-
ture from the point of view of a simple analytical approximate
formula for the rate constant depending on the number and the
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size of reactive spots on both particles of different radii. In or-
der to derive such a formula we will use the presentation of
the effective factor F in the form14

F = [
1 + F−1

1 + F−1
2 + F−1

12

]−1
, (23)

derived for a single reactive spot on each reactant. Similar to
Eq. (16) the factors F1, F2, and F12 correspond to the follow-
ing extreme cases (depending on the degree of the anisotropy
of the reactants): F1 – first reactant is extremely anisotropic
and second reactant is isotropic; F2 – first reactant is isotropic
and second reactant is extremely anisotropic; F12 – both re-
actants are extremely anisotropic. The factors F

(1)
1 and F

(1)
2

(superscripts denote single-spot case) correspond to the case
of Sec. II and, therefore, can be obtained from Eq. (22) with
proper change of indices. The factor F

(11)
12 (superscript (11)

denotes the case of a single spot on each reactant) can be com-
puted using the known but cumbersome expression14 of the
kinematic approximation

F
(11)
12 =

(
f1

√
f2 + f2

√
f1

)
h

(√
f1/f2

)
, (24)

[h(ξ )]−1 = (1 + ξ )

∞∫
0

∞∫
0

dxdy

xy

J 2
1 (x)J 2

1 (y)

w1/2(x, y, ξ )
K

[
4ξxy

w(x, y, ξ )

]
,

(25)

w(x, y, ξ ) = (x + ξy)2 + 4f2ξ
2S2

(
x

2f
1/2
1

;
y

2f
1/2
2

)
,

(26)

S2(μ, ν) = R2

D

[
μ(μ + 1)D(1)

rot + ν(ν + 1)D(2)
rot

]
, (27)

where K is an elliptic integral; J1 is Bessel function of the
first kind; D

(1)
rot and D

(2)
rot are the rotation diffusion coeffi-

cients of the first and the second reactants, correspondingly.
We consider only two specific cases of rotational diffusion.
First case is for no rotational diffusion, i.e., S = 0, which
is further denoted by subscript 0. In particular, w0(x, y, ξ )
= (x + ξy)2 and h0(0) = 3π / 16; cf. Eq. (17). Second case
(the default one) is for the Stokes rotational diffusion (same as
translational)

D
(j )
rot = kBT

8πηR3
j

,D = kBT

6πη

(
1

R1

+ 1

R2

)
. (28)

Here and further we assume that the size of the reactive
spot is the same on both reactants, i.e., f1R

2
1 = f2R

2
2, and ne-

glect “+1” in the brackets in Eqs. (27) and (28). Then,

w(x, y, ξ ) = (x + ξy)2 + 3

4
(1 + ξ )(ξx2 + y2), (29)

and h(ξ ) depends solely on its argument. One can easily show
that h(ξ ) = h(1/ξ ), which corresponds to the symmetry of
F

(11)
12 with respect to interchange of the reactants. Hence, one

need to know h(ξ ) and h0(ξ ) only for 0 ≤ ξ ≤ 1. We have cal-
culated both these functions in this range using quasi Monte
Carlo integration with relative errors less than 10−3, results
are shown in Fig. 4. Variability of these functions is within
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FIG. 4. The correction factors h(ξ ) and h0(ξ ): dots – calculated by direct
numerical integration; solid line – approximation (30).

25% over the whole range, so they can be considered con-
stant in the zero approximation. Alternatively, the following
interpolating formulae can be used:

h(ξ ) = 1.199
1 + 0.708ξ + ξ 2

1 + 1.206ξ + ξ 2
,

(30)

h0(ξ ) = 0.588
1 − 0.044ξ + ξ 2

1 + 0.498ξ + ξ 2
.

These formulae keep the original symmetry and have rel-
ative errors less than 3 × 10−3.

To accommodate multiple spots we consider the reactive
zone on each reactant as an ensemble of circular spots of equal
sizes, and the size of the spot is much smaller than the distance
between spots. Then we split the integral over the Green func-
tion in Eq. (8), similar to Eq. (18):

1

k
= 1

V 2
1 V 2

2

( N1∑
i,j=1
i �=j

N2∑
μ,ν=1
μ �=ν

G
μν

ij +
N1∑
i=1

N2∑
μ,ν=1
μ �=ν

G
μν

ii

+
N1∑

i,j=1
i �=j

N2∑
μ=1

G
μμ

ij +
N1∑
i=1

N2∑
μ=1

G
μμ

ii

)
, (31)

G
μν

ij = 1

�
(1)
i �

(2)
μ �

(1)
j �

(2)
ν

∫
�

(1)
i

dω(1)
∫

�
(2)
μ

dω(2)
∫

�
(1)
j

dω
(1)
0

×
∫

�
(2)
ν

dω
(2)
0 G

(
ω(1), ω(2); ω(1)

0 , ω
(2)
0

)
, (32)

where i, j and μ, ν index spots on reactant 1 and 2, respec-
tively, and ω denote angular variables varying over the cor-
responding spot surfaces (solid angles �). Green function in-
side integral in Eq. (32) is very cumbersome,14 which makes
direct analysis of G

μν

ij non-trivial. Instead we resort to corre-
spondence between cross-terms (i �= j and/or μ �= ν) and the
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result for the isotropic reactant, discussed in Sec. II. Thus,〈
1

V 2
1 V 2

2

N1∑
i,j=1
i �=j

N2∑
μ,ν=1
μ �=ν

G
μν

ij

〉
= (N1 − 1)(N2 − 1)

N1N2

1

4πRD

≈ 1

4πRD
, (33)

〈
1

V 2
1 V 2

2

N1∑
i=1

N2∑
μ,ν=1
μ �=ν

G
μν

ii

〉
= N2 − 1

N1N2

1

4πRDF
(1)
1

≈ 1

4πRDN1F
(1)
1

, (34)

〈
1

V 2
1 V 2

2

N1∑
i,j=1
i �=j

N2∑
μ=1

G
μμ

ij

〉
= N1 − 1

N1N2

1

4πRDF
(1)
2

≈ 1

4πRDN2F
(1)
2

, (35)

1

V 2
1 V 2

2

N1∑
i=1

N2∑
μ=1

G
μμ

ii = 1

4πRDN1N2F
(11)
12

. (36)

Finally, Eq. (31) term-by-term corresponds to Eq. (23)
with

F1 = N1F
(1)
1 = 3π

16
N1f

1/2
1

(
1 + 3R2

4R1

(
1 + R2

R1

))1/2

,

(37)

F2 = N2F
(1)
2 = 3π

16
N2f

1/2
2

(
1 + 3R1

4R2

(
1 + R1

R2

))1/2

,

(38)

F12 = N1N2F
(11)
12 = N1N2

(
f1

√
f2 + f2

√
f1

)
h

(√
f1/f2

)
.

(39)
Similar to Sec. II the combination of Eqs. (23) with (37)–

(39) is expected to be adequate for the whole range of N1 and
N2. Moreover, the whole derivation is rigorous in the limit of
F12 � min(F1,F2,1), which is equivalent to

N1f1 � 1, N2f2 � 1, N1N2

(
f1

√
f2 + f2

√
f1

)
� 1,

(40)
which is significantly weaker than the requirement for each
reactant independently when the other reactant is considered
isotropic. This is a consequence of accounting for rotational
diffusion. Obviously, Eq. (40) implies F ≈ F12.

IV. IMMUNOAGGLUTINATION

If the receptors-covered particles in colloid are sur-
rounded by dissolved multivalent ligand molecules, the ag-
gregation (i.e., immunoagglutination) is going on due to the
formation of receptor-ligand-receptor “bridges” between the
particles. Immunoagglutination means that there are two
types of receptors on the surface of the particles (1) free re-
ceptors and (2) receptors occupied by ligand, and the binding

is possible only between free and occupied receptors. Let the
first particle has on its surface Nx,1 free receptors and Ny,1
occupied receptors, and, correspondingly, the second parti-
cle has Nx,2 and Ny,2 surface receptors. Although the above
derivation provides a general framework, below we limit our-
selves to the case of Eq. (40). Then one can use Eq. (39) for
the effective steric factor F and obtain the following analytical
expression for the binding rate constant:

k = 4πRD
(
f1

√
f2 + f2

√
f1

)
× (Nx,1Ny,2 + Ny,1Nx,2)h

(√
f1/f2

)
. (41)

V. MODELING CLUSTERS AS FRACTAL OBJECTS

We assume that all monomers are spherical particles of
the same radius R(1) and total number N(1) of receptors on the
surface. In order to apply the above results for the simulation
of the aggregation kinetics we consider the clusters as frac-
tal particles24 also of spherical shape. That means the radius
R(i) of a cluster consisting of i monomers can be expressed
through the monomer radius, as follows:

R(i) = R(1)i1/d , (42)

where d is the fractal dimension (in the range from 2 to 3)
of the cluster. We assume that the average surface density of
all receptors on clusters is not changing during aggregation
and the cluster surface available to binding is equal to that of
the equivalent sphere. Then the total number N(i) of surface
receptors on a cluster of size i is

N (i) = N (1)i2/d . (43)

Due to steric complementarity (i.e., biospecificity) of the
ligand and the receptor, their corresponding reactive spots are
equal in size (e.g., the effective radius of the spot). Let a be
the effective radius of the reactive spot. Then the steric factor
f (i) of the reactive spot of the cluster is

f (i) =
( a

2R(1)

)2
i−2/d . (44)

Diffusion coefficient D(i) of the cluster can be approxi-
mated using the Stokes-Einstein formula

D(i) = kBT

6πηR(i)
= kBT i−1/d

6πηR(1)
, (45)

where η is the viscosity of the media, kB is the Boltzmann
constant, T is the temperature.

If one neglects stochastic variation of the fraction p of
occupied surface receptors from particle to particle (due to a
finite number of receptors), then each particle (monomer or
cluster) has certain number of free N

(i)
x,n and occupied N

(i)
y,n

receptors on their surface:

N
(i)
x,n = N

(1)
x i2/d = (1 − p)N (1)i2/d , (46)

N
(i)
y,n = N

(1)
y i2/d = pN (1)i2/d . (47)

Let us denote this model as continuous one. Substitut-
ing Eqs. (46) and (47) into Eq. (41) and taking into account
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FIG. 5. Theoretical kinetics neglecting discreteness of receptors on particles
for standard DLA and for our rate kernels of Smoluchowski equation (con-
tinuous model, Eq. (48)).

Eqs. (42)–(45), the binding rate constant kij between two clus-
ters can be expressed as

kij = 4kBT

3η

( a

2R(1)

)3
N

(1)
x N

(1)
y (i1/d + j 1/d )2

× (i−1/d + j−1/d )h((i/j )1/d ). (48)

Assuming that at start time (t = 0) of aggregation there
were only monomers with the initial concentration S0, we
simulated the aggregation kinetics by Smoluchowski Eq. (1)
using two different kernels: (1) kij from Eq. (48); and (2) stan-
dard DLA kernel25

kDLA
ij = 2kBT

3η
(i1/d + j 1/d )(i−1/d + j−1/d ), (49)

assuming d = 3. The results of the simulation are shown in
Fig. 5 in terms of the relative time

t̃ = 1

2
k11C0t. (50)

For the illustration we present the kinetics of monomers
S1 (Fig. 5(a)) and all particles C (Fig. 5(b)) using
traditional coordinate transforms: y = √

C0/C1 − 1,26 and
y = C0/C − 1,27 since they are linear in time for the partic-
ular case of a constant kernel (kij = const) of Smoluchowski
Eq. (1) and almost linear for the standard DLA. Use of relative

time allows us to separate the effect of different dependence
on i and j (in contrast to different prefactors). In particular,
our model predicts faster binding of larger clusters relative to
the smaller ones (e.g., for i = j), which results in cumulative
increase of aggregation speed.

VI. MONTE CARLO SIMULATION OF BIOSPECIFIC
AGGREGATION

In this section we build up a “discrete” aggregation model
(in contrast to the continuous model used in Sec. V), taking
into account the finite number of receptors on each particle.
This implies stochastic variation of the fraction of occupied
receptors from particle to particle described by the binomial
distribution

P (Ny ; N,p) = N !

(Ny)!(N − Ny)!
p

N
y (1 − p)N−N

y , (51)

where P(Ny; N, p) is the probability for the particle with N
total surface receptors to have Ny occupied surface receptors
if the average fraction of occupied surface receptors is p. This
variation is especially important for Np ∼ 1.

We used the following algorithm for the population dy-
namics simulation. At the beginning of the process all parti-
cles are monomers which are stochastically distributed on the
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FIG. 6. Theoretical kinetics taking into account discreteness of receptors on
particles (at N = 10 and different p), and the comparison with the continuous
model (Eq. (48)).
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FIG. 7. Same as Fig. 6 but for N = 100.

amount of occupied receptors according to Eq. (51). In order
to apply Eq. (41) for the simulation one has to know the num-
bers of free N

(i)
x,n and occupied N

(i)
y,n receptors on the reactants

(n = 1,2) surface. Due to the fractal structure of the clusters,

N
(i)
x,n = 4πR(i)2 X

(i)
n

4πR(1)2
i

= X
(i)
n i(2/d)−1, (52)

N
(i)
y,n = 4πR(i)2 Y

(i)
n − (i − 1)

4πR(1)2
i

= [
Y

(i)
n − (i − 1)

]
i(2/d)−1,

(53)
where Y

(i)
n and X

(i)
n are the total number of ligand molecules

and free receptors in the cluster (both on the surface and in-
side) consisting of i monomers. The term (i − 1) in Eq. (53) is
the number of bonds between i monomers in the cluster. Tak-
ing into account that all monomers have the same total num-
ber N(1) of surface receptors one can calculate X

(i)
n through

Y
(i)
n :

X
(i)
n = iN (1) − Y

(i)
n − (i − 1). (54)

Let us denote the particle number n (monomer or clus-

ter) by the vector [ i

Y
(i)
n

]. Then the reaction scheme can be ex-

pressed as [
i

Y
(i)
n

]
+

[
j

Y
(j )
m

]
→

[
i + j

Y
(i)
n + Y

(j )
m

]
. (55)
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FIG. 8. Same as Fig. 6 but for N = 1000.

The rate constant of reaction (55) is calculated substitut-
ing Eqs. (52)–(54) into Eq. (41).

Thus, the population of particles in the colloid system
is represented by the particles concentration C(i, Y (i)

n ; t) as a
function of i and Y

(i)
n at certain time t. During the aggregation

the function C(i, Y (i)
n ; t) is changing according to the reaction

scheme (55). Using initial condition based on Eq. (51)

C
(
i, Y

(i)
n ; t = 0

) =
{

C0P
(
Y

(1)
n ; N (1), p

)
, i = 1,

0, i > 1,
(56)

we calculated the population dynamics C(i, Y (i)
n ; t) us-

ing Monte Carlo stochastic simulation algorithm (SSA) of
Gillespie28, 29 modified for aggregation.30 Since the aggre-
gating system is strongly coupled, we chose the direct SSA
method.29, 31

Theoretical kinetics of the aggregation, which we simu-
lated taking into account discrete number of receptors on par-
ticles, are shown in Figs. 6–8. One can see from these figures
that the discreteness on the reactive spots affects significantly
the aggregation kinetics, if the number of reaction zones (free
binding sites) on a monomer particle is less than 10 (i.e., the
product pN < 10 or (1−p)N < 10).

VII. CONCLUSION

Using kinematic approximation of the diffusion problem
we derived a new analytical formula for the rate constant of
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aggregation in the general case when both reactants of dif-
ferent radii have arbitrary number of reactive spots (active
sites). The formula was extended to the case when receptors
are partially occupied by multivalent ligands (immunoaggluti-
nation). The clusters were modeled as fractal objects of spher-
ical shape. Applying this formula for the simulation of the
biospecific aggregation kinetics of colloids we took into ac-
count discreteness of receptors on single particles. The popu-
lation dynamics was modeled using Monte Carlo simulation
based on Gillespie stochastic algorithm modified for aggrega-
tion kinetics. When a small number of receptors are occupied
on a single particle the kinetics simulation resulted in signifi-
cant deviation from that of the continuous model.
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