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Abstract
We study the inverse light-scattering problem which arises in the
characterization of small particles by means of scanning flow cytometry. The
problem is stated in general form as the problem of solution of a nonlinear
equation and solved by the gradient optimization method. In this event, the
problem of choosing the starting point appears. In this paper, we propose a
method for making this choice based on the preliminary analysis of the direct
map. A number of numerical examples are given, using both synthetic and
experimental data.

1. Introduction

This paper is devoted to the issues connected with the solution of nonlinear equations by
gradient methods. Such equations appear in numerous applied problems, in particular, in the
characterization of small particles by means of scanning flow cytometry. This problem has
served as the main motivation of the present research.

Scanning flow cytometry has been used for the characterization of blood and other particles
for more than a decade. We consider the specific statement connected with using the scanning
flow cytometer designed at the Institute of Chemical Kinetics and Combustion, Novosibirsk,
Russia. A detailed description of the cytometer is given in [1].

Mathematically, the existing version of the cytometer measures the light-scattering pattern
(LSP):

A(θ ) = 1

2π

∫ 2π

0
(S11(θ, ϕ) + S14(θ, ϕ)) dϕ, 10◦ � θ � 70◦, (1)

where Si j(θ, ϕ) are the entries of the Muller matrix (see section 2). For spherically symmetric
particles S14 ≡ 0.

As a rule, data for the solution of the inverse light-scattering problem acquired in real
experiments are usually incomplete. First, this is caused by the impossibility of measuring the
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phase of the wave, except for microwave-analogue experiments [2]. It means that we usually
have only the Muller matrix Si j(θ, ϕ) rather than the amplitude matrix Si(θ, ϕ) (see section 2).
Second, it is not always possible to measure all entries Si j(θ, ϕ). Third, it is practically
impossible to obtain the scattering data in the directions close to the incident and backward
directions. The difficulties listed are typical of all inverse scattering problems. In our case,
an additional loss of information happens due to integration over the azimuth angle ϕ. All
these circumstances complicate the purely theoretical study of the problem and construction
of practically usable inversion algorithms.

By the characterization problem we mean the problem of finding the shape and size of a
particle and (possible) its internal structure. In practice, we deal with specific particles which
can be described by a few parameters. On the other hand, we have finitely many data, though
their number can be much greater than the number of parameters.

Using the Maxwell equation (see section 2), for given parameters we can find the scattering
data, i.e. construct the map f such that

(A(θ1), . . . , A(θm)) = f (x1, . . . , xn), (2)

where xi are the parameters of the particle.
Thus, we need to solve a nonlinear equation with the known map f . Considering the

difficulty of the direct problem and complications connected with the incompleteness of
data, we can hardly hope to invert f theoretically and obtain an explicit inversion formula.
Therefore, it is more realistic to seek a solution by an optimization method, minimizing the
residual functional. However, as the numerical simulations show, in our case the residual has
many local minima which leads to the necessity of choosing a good starting point. In this
paper, we propose a method for choosing the starting point based on the preliminary analysis
of the direct map f . Note that in flow cytometry it is necessary to process large samples of
similar particles. The proposed approach assumes that the preliminary analysis is carried out
once for the whole sample, given the parameters’ ranges. Then, the single set of starting points
can be used for all particles in the sample.

As an example of application, we consider the simplest problem of finding the radius and
refraction index of a spherical particle from the LSP A(θ j) measured at finitely many angles
θ j, j = 1, . . . , m.

The paper is organized as follows. In section 2, we give necessary facts from
electromagnetic scattering theory. In section 3, we discuss the issues of solving nonlinear
equations and choosing the starting point. In section 4, we give the results of numerical
experiments.

2. Direct and inverse scattering problem for small particles

2.1. Scattering problem

As is well known, propagation of time-harmonic electromagnetic waves is described by the
Maxwell equations

curl E(x) = iωμH(x), (3)

curl H(x) = −iωεE(x), x ∈ R
3, (4)

where E and H are the electric and magnetic fields, ω is the frequency, and ε and μ are the
electric permittivity and magnetic permeability. We suppose that μ is constant and ε(x) is
piecewise constant:

ε(x) =
{
ε1 in �,

ε0 outside �,
(5)

where � is a bounded domain with a smooth boundary occupied by the particle.
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The direct scattering problem is to find a solution of the form E(x) = E(i)(x) + E(s)(x),
where the incident wave E(i)(x) satisfies (3) and (4) with ε ≡ ε0 and the scattered wave
E(s)(x) meets the radiation condition (see [3]). Here and in the following, we consider only
the electric field, since H(x) is reconstructed from (3). As the incident wave, we take the
plane wave E(i)(x) = E0eikê(i)·x, where ê(i) is the unit vector in the incident direction, E0 is
a constant complex vector orthogonal to ê(i) and k = ω

√
ε0μ is the wavenumber connected

with the wavelength λ by the relation k = 2π
λ

.
The scattered wave has the following asymptotic behavior at infinity:

E(s)(x) = eik|x|

−ik|x|
(

E∞
(

x

|x|
)

+ O

(
1

|x|
))

, |x| → ∞; (6)

moreover, E∞(x̂) is orthogonal to x̂ for every unit vector x̂ ∈ R
3. In the spherical coordinates

(r, θ, ϕ), E∞ is a function of θ and ϕ. Suppose that the incident direction coincides with
the direction of the x3-axis. For every direction (θ, ϕ), we standardly choose the basis ê(i)

⊥ ,
ê(i)
‖ in the x1, x2-plane and the basis ê(s)

⊥ , ê(s)
‖ in the tangent space to the sphere at the point

(θ, ϕ), so that the first vector in each pair is perpendicular to the scattering plane and the
second is parallel (for details see [4], section 3.2). Decompose the vectors E0 and E∞ in the
corresponding bases:

E0 = E0
⊥(θ, ϕ)ê(i)

⊥ + E0
‖(θ, ϕ)ê(i)

‖ , (7)

E∞(θ, ϕ) = E∞
⊥ (θ, ϕ)ê(s)

⊥ + E0
‖(θ, ϕ)ê(s)

‖ . (8)

In view of the linearity of the problem, the pairs of coefficients are connected as follows:(
E∞

⊥
E∞

‖

)
=

(
S1(θ, ϕ) S4(θ, ϕ)

S3(θ, ϕ) S2(θ, ϕ)

)(
E0

⊥
E0

‖

)
. (9)

The complex-valued matrix (Sp(θ, ϕ)) is called the amplitude matrix. The quadratic
combinations of its entries constitute the Muller matrix Si j(θ, ϕ), i, j = 1, . . . , 4:

S11 = 1
2 (|S1|2 + |S2|2 + |S3|2 + |S4|2), (10)

S12 = 1
2 (|S2|2 − |S1|2 + |S4|2 − |S3|2), etc. (11)

The real-valued functions Si j(θ, ϕ) are the most complete data that can be acquired in a real
experiment.

2.2. The Mie theory (scattering by a homogeneous sphere)

In the case of a homogeneous sphere the scattered wave and the matrices can be written down
explicitly. Below, � is the sphere of radius a, α = ka is the size parameter, m =

√
ε1
ε0

is the
relative refraction index, and β = mα.

The incident and scattered waves are expanded in the vector spherical harmonics M(i)
p1n,

N(i)
1pn, n = 1, 2, . . . , where p = e, o denotes parity (in ϕ) and i takes the values 1 for regular

harmonics and 3 for harmonics with the radiation condition (for details see, for example, [4],
chapter 4):

E(i)(x) = E0
∞∑

n=1

in
2n + 1

n(n + 1)

(
M(1)

o1n − iN(1)

e1n

)
, (12)

E(s)(x) = E0
∞∑

n=1

in
2n + 1

n(n + 1)

(
ianN(3)

e1n − bnM(3)

o1n

)
. (13)
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The coefficients an and bn are found from the condition of equality of the tangent components
of the internal and external fields and have the form

an = mψn(β)ψ ′
n(α) − ψn(α)ψ ′

n(β)

mψn(β)ξ ′
n(α) − ξn(α)ψ ′

n(β)
, (14)

bn = ψn(β)ψ ′
n(α) − mψn(α)ψ ′

n(β)

ψn(β)ξ ′
n(α) − mξn(α)ψ ′

n(β)
, n = 1, 2, . . . , (15)

where ψn(ρ) = ρ jn(ρ), ξn(ρ) = ρh(1)
n (ρ), h(1)

n (ρ) = jn(ρ)+ iyn(ρ), and jn(ρ) and yn(ρ) are
the spherical Bessel functions. For entries of the amplitude matrix, we obtain the expressions

S1(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
(anπn(θ ) + bnτn(θ )), (16)

S2(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
(bnπn(θ ) + anτn(θ )), (17)

S3(θ ) = S4(θ ) = 0, (18)

where

πn(θ ) = P1
n (cos θ )

sin θ
, τn(θ ) = dP1

n (cos θ )

dθ
, (19)

Pm
n (t) are the associated Legendre polynomials.

Obviously, we can also obtain expressions for Si j(θ ) in the form of infinite series in the
products of πn(θ ) and τn(θ ).

Thus, the solution of the direct problem assumes the following chain:

α, m −→ an, bn −→ Si(θ ) −→ Si j(θ ). (20)

Differentiating (14) and (15), we can explicitly find the derivatives of S11(θ ) with respect to α

and m.

2.3. Inverse Mie problem

The inverse problem is to find the size parameter α (radius a) and the refractive index m from
Si j(θ ) or Si(θ ) given for some angles θ ∈ [0◦, 180◦].

The methods for solving the inverse Mie problem can be conditionally divided into
empirical, analytical and optimization methods (we do not consider those based on various
approximations).

Empirical methods, which come first historically, are based on the computation of (many)
solutions to the direct problem and matching them to experimental data [5–8]. So, in [8],
empirical formulas were given for a and m obtained from the analysis of the position of peaks
of the LSP A(θ ) and its values at these points.

Analytical methods assume theoretical analysis of the direct map and obtain a formula
or algorithm. It turns out that the coefficients in the Fourier expansion of A(θ ) or the
expansion in orthogonal polynomials (for example, Gegenbauer polynomials) exhibit a specific
behavior. Namely, the coefficients rapidly decrease beginning with a number which is explicitly
connected with the size parameter and practically independent of m [9, 10]. This observation
gives an inversion procedure for the size parameter. However, for rigorous implementation of
this method, we need A(θ ) for all θ ∈ [0◦, 180◦].

We should observe in particular the purely analytical solution of the inverse Mie problem of
[11]. Assume that Si(θ ) is given for θ ∈ [0◦, 180◦]. The coefficients an and bn are easily found
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from S1(θ ) and S2(θ ), respectively, in view of the orthogonality of the families πn(θ ) ± τn(θ )

by the formulas

an = 1

2n(n + 1)

∫ π

0
(S2(θ )τn(θ ) + S1(θ )πn(θ )) sin θ dθ, (21)

bn = 1

2n(n + 1)

∫ π

0
(S2(θ )πn(θ ) + S1(θ )τn(θ )) sin θ dθ. (22)

Then α and m are found for an and bn as follows. Eliminating from (14) and (15) the values
depending on β, we obtain the identity

m2 = anξn(α) − ψn(α)

anξ ′
n(α) − ψn(α)

bnξ
′
n(α) − ψ ′

n(α)

bnξn(α) − ψn(α)
, (23)

which is valid for n = 1, 2, . . . . Given an and bn, consider the function fn(z) equal to the
right-hand side of (23) for α = z. If z = α, then the sequence fn(z) is obviously constant
and is equal to m2. In [11], it was demonstrated that the converse is also true: the sequence is
constant only for z = α. Thus, the algorithm for finding α and m assumes the construction of
the sequence fn(z) for different zs. The value of z for which fn(z) is constant is the sought α

and the value fn(z) equals m2. Thus, we have an analytical inversion procedure for the first
two steps in (20).

Now, we discuss the inversion of the last passage. At this step, we lose the information.
In the general case from four complex-valued functions Si(θ, ϕ), we obtain 16 functions
Si j(θ, ϕ) of which only seven are independent. From these functions, we can reconstruct the
absolute values |Si(θ, ϕ)| and the differences between their arguments. In the case of a sphere,
only three of the functions Si j(θ ) are independent. Thus, the inversion of the last step is
hardly possible without a priori information about Si. The authors are unaware of such results.
Observe that most theoretical studies of the inverse scattering problems assume that Si are
given.

Optimization methods. In the case when Si j(θ ) is given for a limited number of angles,
one broadly uses optimization methods which are based on finding the (global) minimum of
some (objective) residual functional, for example,

R(a, m) =
m∑

j=1

|Ap(θ j; a, m) − Ad
j |2,

where Ad
j is the LSP measured at θ j and Ap(θ; a, m) is the computed LSP of the particle with

parameters a and m. Sometimes, A(θ ) is replaced with log A(θ ) and weighted functionals are
used. So optimization methods differ by the objective functional and the way of minimization:
gradient and nongradient. Gradient methods need a good starting point and are local in this
sense. An application of the gradient method to the inverse Mie problem is presented in [12],
where local minimizations are repeatedly carried out with different starting points chosen
according to the stochastic algorithm of Rinnooy Kan and Timmer [13, 14]. Note that in [12],
unlike this paper, the starting points are constructed individually for each particle.

The basic nongradient method for global minimization used for solving the inverse Mie
problem is the DIRECT method [15–17]. Its application to the particle sizing problem is
described in [12, 18] (see also the bibliography therein).

Neural networks. There are several articles where the inverse Mie problem is solved by
means of neural networks [19–22].

All existing methods have advantages and drawbacks. Empirical and neural network
methods are not sufficiently rigorous. Purely analytical methods do not apply to real data.
The most powerful practical methods are the optimization methods. Although they may

5
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require unpredictably large amounts of computation. Observe that this amount depends on the
range of the sought parameters. For example, small particles may require fewer iterations than
large ones. The approach proposed in this paper can reduce the number of computations and
predict for which particles the problem is better solved.

In conclusion, we give a list of recent works on close inverse scattering problems:
[2, 23–26] (see also the bibliography therein).

3. Solution of a nonlinear equation

3.1. Statement of the problem

Let f : X → R
d be a smooth function in a bounded domain X ⊂ R

p. We suppose that the
number of parameters p is small and the number of data d is rather large; anyway p < d.
The parameter space R

p is furnished with the inner product 〈 · , · 〉 and the corresponding
norm ‖ · ‖p and the data space R

d , with the norm ‖ · ‖d . Let X1 be a subdomain of X whose
boundary is distant from the boundary of X . Given y0 = f (x0), x0 ∈ X1, we need to find x0.
The following questions arise.

(1) Does y0 uniquely determine x0?
(2) How can we reconstruct practically x0 from y0 or its approximate value yδ?
(3) How is inaccuracy in y0 transformed into the error in x0?

We are mainly interested in the second question. Partial answers to the other two questions
follow from the numerical results at the end of the paper.

If the equation f (x) = y0 has a unique solution, then it can be sought as the global
minimum of the residual functional Ry0 (x) = ‖ f (x) − y0‖2

d . If we can compute the derivatives
of f (x), then it is reasonable to carry out minimization by a gradient method, for example,
the conjugate gradient method, provided that the starting point is close enough to x0. In the
case when the equation f (x) = y0 is repeatedly solved with different data y0, we can state the
following problem.

Problem 1. Find a set {z j} of starting points such that for every x0 ∈ X1 there is at least one
good starting point, i.e. a point z j such that the minimization process for Ry0 (x) started at z j

leads to x0.

Having constructed {z j}, we can solve the equation f (x) = y0 with the indicated method
for arbitrary data y0 = f (x0), x0 ∈ X1. However, if {z j} is large, the following problem appears.

Problem 2. Suppose that {z j} is constructed. Given y0, find a (possibly small) subset of {z j}
such that at least one z j in this subset leads to x0.

We discuss these problems below.

3.2. The set of starting points

For the constructions below, we introduce some functions on X1. Fix x0 ∈ X1 and consider the
residual functional Ry0 (x), y0 = f (x0). Define

r(x0) = sup{r > 0 | B(x0, r) ⊂ X and (24)

∀x ∈ B(x0, r) 〈gradx Ry0 (x), x − x0〉 < 0}. (25)

The value r(x0) is the radius of the greatest ball for which at all interior points the direction of
steepest descent ‘looks toward’ x0.

6
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It is obvious that

• the point x0 is a unique local minimum of Ry0 (x) in B(x0, r(x0));
• the minimization process for Ry0 (x) started at an arbitrary point of B(x0, r(x0)) leads

to x0;
• the ball B(x0, r(x0)) depends on the inner product (and the norm) in R

p and may cover a
greater or smaller part of all good starting points.

Estimate Ry0 (x) outside B(x0, r(x0)) and put

t(x0) = inf
x∈X1\B(x0,r(x0 ))

Ry0 (x). (26)

The value t(x0) characterizes the uniqueness of the solution to the equation f (x) = y0: if
t(x0) > 0, then x0 is uniquely determined by y0. Define

s(x0) = sup{s > 0 | ∀x ∈ B(x0, s) Ry0 (x) < t(x0)}. (27)

It is clear that the value Ry0 (x) at an arbitrary point x ∈ B(x0, s(x0)) is less than every
extraneous local minimum.

The set of starting points can be constructed in two ways.

Method 1. For a point z ∈ X1 consider all balls B(x, r(x)), x ∈ X1, containing z. Their centers
x constitute the set of points for which z is a good starting point:

C(z) = {x ∈ X1 | z ∈ B(x, r(x))}. (28)

We call C(z) the cover zone of z.
Take z1 to be the point z ∈ X1 with the greatest measC(z). Suppose that the points

z1, . . . , zk are already constructed. For z ∈ X1 \ ∪k
j=1C(z j) define dk(z) to be the distance from

z to the domain already covered, ∪k
j=1C(z j). The next point zk+1 is taken to be the one with

the greatest value min{πdk(z), measC(z)} (we multiply by π to get the disk area). This choice
is a trade-off between having a large coverage area and being distant from the set of points
already covered. Eventually, provided that r(x) > 0 on X1, we obtain a finite {z1, . . . , zN} such
that X1 ⊂ ∪N

j=1C(z j) (finiteness is a consequence of the Borel–Lebesgue theorem).

Method 2. The second method is similar to the first with the only difference that the balls
B(x, r(x)) are replaced with B(x, s(x)). Naturally, the set {z j} constructed by the second
method is greater. However, this method has advantages at the solution stage.

3.3. Solution of the equation

Suppose that the set of starting points {z j} is constructed. Let y0 = f (x0), x0 ∈ X1, be given.
For a common reason, we have to minimize the residual functional Ry0 (x) starting successively
from every point z j and then choose the result with least residual (zero in the case of exact
data). However, the number of points z j can be rather large. To optimize the process we do the
following.

• Choose those points in {z j} which may potentially lead to x0.
• Arrange the selected points z j by importance.
• Formulate the test for the solution constructed so far to be unimprovable (this is especially

necessary for the solution of equations with the approximate right-hand side).

The strategy naturally depends on the method of construction of the set {z j}.
Method 1. At the stage of construction of {z j}, for every z j we can compute the value

m(z j) = sup
x∈C(z j )

‖ f (z j) − f (x)‖d . (29)

7



Inverse Problems 28 (2012) 045012 G V Dyatlov et al

Violation of the condition Ry0 (z j) < m(z j) means that x0 whose data might be y0 does not
belong to the cover area z j and hence we should not start with z j. Thus, we choose the condition
Ry0 (z j) < m(z j) for the selection of potentially good starting points z j.

Then, we simply arrange z j by the values Ry0 (z j). Note that the point with the least value
of the residual functional may fail to be a good starting point for x0.

Method 2. In the case of {z j} constructed by the second method, we simply find zk with the
least value Ry0 (zk). By construction, the point zk is necessarily a good starting point. Indeed,
by construction among {z j} there is at least one zl ∈ B(x0, s(x0)). Then, we have the chain of
inequalities Ry0 (zk) � Ry0 (zl ) � t(x0) which means that zk ∈ B(x0, s(x0)) is a good starting
point.

3.4. Data with noise

In practice, the data are always corrupted with noise; that is, we have some approximation
yδ of y0. In this event, we can still apply our optimization approach, obtaining thereby the
minimum point xδ . The following questions arise.

(1) Can we still use the set {z j} for finding the global minimum of Ryδ (x) as described above?
(2) How do we estimate ‖xδ − x0‖p, knowing ‖yδ − y0‖d?

Unfortunately, we cannot answer these questions theoretically. The results of numerical
simulations below provide a partial answer.

4. Numerical experiments

We apply the described approach to the problem of finding the radius (a) and refractive index
(n1) of a homogeneous sphere from the scattering data A(θ j ), where the angles θ j, j = 1, . . . , d,
d = 128, constitute a uniform grid from 10◦ to 70◦. Below, we use the first method for the
construction of the set of starting points and solution of the optimization problem.

4.1. Parameterization of particles

Besides the natural parameters α and m, we use other parameterizations. In order to relate our
range to the size of biological particles, we use the physical parameters r = λα/2πn0 and
n1 = mn0, where λ is the wavelength in vacuum and n0 is the refractive index of the media. In
our experiments λ = 0.66 μm and n0 = 1.337.

Another parameterization uses the parameters α and ρ = 2α(m − 1). The parameter ρ is
sometimes called the phase-shift parameter [8]. The parameters α and ρ are more convenient
for the construction of the set of starting points and the solution of the inverse problem, since
the partial derivatives of the LSP A(θ ) with respect to them have the same order.

The norm in the parameter space is defined as ‖(α, ρ)‖2 = α2 + ρ2, and the (weighted)
norm in the data space is defined as ‖A‖2

w = 1
d

∑d
j=1 |A(θ j) w(θ j)|2 with the weight function

w(θ ) = 1◦

θ
exp(−2 ln2(θ/54◦)), 1◦ = π

180
,

displayed in figure 1(a). In fact, we multiply A(θ ) by w(θ )/
√

d and use the function
I(θ ) = A(θ )w(θ )/

√
d with the standard L2 norm:

‖I‖2 =
d∑

j=1

|I(θ j)|2 =
d∑

j=1

|A(θ j)w(θ j)|2
d

= ‖A‖2
w.
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Figure 1. The weight function w(θ ) (solid line) and a typical experimental LSP (dashed line, no
scale) (a) and the set of starting points (with isolines ρ = 2.5, . . . , 12.5) (b).

The choice of w(θ ) is explained by the fact that the experimental data have more noise for
angles close to 10◦ and 70◦ (see [27]).

4.2. Starting points

The set of starting points is constructed for the domain X1 = [5, 40]×[1.05, 1.3] of parameters
α and m (see figure 1(b)). Since the solution of the inverse problem is carried out in the
variables α and ρ, we construct the starting points in these variables and then translate the
result back into α and m. Let ψ : (α, m) �→ (α, ρ). Under the map ψ , rectangles get distorted;
therefore, the construction, in fact, is carried out as follows. We split the domain X1 into
subdomains Xk

1 = [10k, 10(k + 1)] × [1.05, 1.3], each of which is enclosed in a greater
domain Xk = [10k − 2, 10(k + 1) + 2] × [1.01, 1.35], k = 0, . . . , 3 (for k = 0 the left
endpoint is 5). For every Xk, we take the least rectangle Gk in the α, ρ-space containing
ψ(Xk). Precompute the values S11(θ j) and the derivatives in α and ρ at the nodes (αi, ρk),
i = 1, . . . , 200, k = 1, . . . , 400, of the uniform grid for Gk and construct the set of starting
points for the domain ψ(Xk

1 ) as described in the previous section. Finally, we take the union
of the sets obtained for the subdomains. This method of construction leads to a small number
of redundant points for α ≈ 10, 20, 30. The constructed set comprises 2458 points.

It is seen that the points have a nonuniform distribution, and their density increases with
the growth of ρ. This is explained by the fact that for large ρ, the LSP I(θ ) oscillates fast and
irregularly in α and ρ. This phenomenon is well known under the name ripple structure (see
[4], section 11.4). Another condensation of starting points is observed for small α and m. We
can see its part in the lower-left corner. This is explained by the fact that for small α and m the
LSP I(θ ) depends practically only on the parameter ρ, which leads to low resolution in the
determination of α and m.

4.3. Exact synthetic data for spheres

We check the algorithm for exact synthetic data. The values I(θ j) are computed for 1000
random points (α0, m0) in the domain X1 = [5, 40] × [1.05, 1.3]. These data are inverted by

9
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Figure 2. Checking the algorithm with exact data. The particles recovered from their LSP are dots
and not recovered are crosses (a); the number of the best starting point (bars) and the number of
iterations from the best starting point (line) for particles recovered from their LSP (b).

our algorithm with the set of starting points for the smaller domain X0 = [5, 20] × [1.05, 1.3].
The so-obtained solutions (α1, m1) are compared with the exact parameters (α0, m0) in the
norm ‖(α, m)‖2 = α2 + 100m2. In figure 2(a), the points (α0, m0) for which the difference is
less than 0.001 are shown as dots, and the other points as crosses. It is well observed that all
points of the domain for which the set of starting points was constructed are exactly determined
by our method. However, the algorithm does not work for the points at some distance from X0.
It means that the choice of the starting point in the problem under consideration is important.
In figure 2(b), we give the distribution of the numbers of the best starting points, that is, the
starting points which lead to the global minimum, and the number of iterations from the best
starting point to the solution. In most cases, the best starting point is the one with the least
initial residual; it is also seen that the first eight points with the least initial residual are enough
to find the global minimum.

4.4. Noisy synthetic data for spheres

We study the stability of the solution under perturbation of data. Consider two types of errors:
white noise and the systematic error connected with nonsphericity (see the next subsection).

In the first case, the LSPs I(θ j) of the points (α0, m0) used in the first experiment are
contaminated with Gaussian noise. The deviation is the same for all points of each LSP but
different for different LSPs; namely it equals

(∑128
j=1

I(θ j )
2

128

)
q
2 , where q is a random value with

uniform distribution in [0, 0.2] chosen for each LSP. Figures 3(a) and (b) show the errors
|α1 − α0| and |m1 − m0| versus the residual ‖Id−I p‖

‖Id‖ × 100%, where Id is the given LSP and I p

is the LSP of the found spherical particle. Observe that the errors increase regularly with the
residual up to ≈ 17% (the bold dots in figures 3(a) and (b) stand for points with |α1 − α0| > 1
or |m1 − m0| > 0.02). The distribution of m1 − m0 versus α1 − α0 is shown in figure 3(c).

4.5. Exact synthetic data for spheroids

In this case the data are generated as follows. We take a random pair (α0, m0) ∈ [5, 40] ×
[1.05, 1.3] (uniformly). For α0, we find a spheroid of the same volume as the sphere of radius

10
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Figure 3. Stability of solution under perturbation of data with Gaussian noise: errors in α and m
versus the residual (a) and (b) (bold dots stand for points with |α1 −α0| > 1 or |m1 −m0| > 0.02),
and the error in m versus the error in α (c).

α0 with the uniformly random ratio of the axes in the interval (0.9, 1.1) and the random angle
between the principal axis and the incident direction in the interval (0◦, 90◦). For this spheroid,
using the T -matrix method (see [28]) we find the LSP I(θ j) at 128 points θ j in the interval
(10◦, 70◦). The number of particles equals 1000.

After inversion we obtain the pair (α1, m1). In figures 4(a) and (b), we give the plots of
the errors |α1 − α0| and |m1 − m0| versus the residual (‖Id − I p‖/‖Id‖) × 100%, where Id is
the given LSP and I p is the LSP of the spherical particle found (the bold dots in figure 4(b)
stand for points with |m1 − m0| > 0.02). In figures 4(c) and (d), we give the plots of |α1 − α0|
and |m1 − m0| versus the nonsphericity factor e = ∣∣ principalaxis

minoraxis − 1
∣∣. These figures demonstrate

good stability of the LSP and the method under nonspherical perturbation of data.
Finally, we make the following observation (see figure 4(f)). As a rule, the absolute error

in m does not exceed 0.1(m1 − 1) independent of e. A similar assertion about α does not take
place.

In table 1, we give the mean absolute errors of α and m of figures 3(c) and 4(e).
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Figure 4. Stability of solution under nonspherical perturbation of data: errors in α and m versus
the residual (a) and (b) (bold dots stand for points with |α1 −α0| > 1 or |m1 − m0| > 0.02); errors
in α and m versus the nonsphericity e (c) and (d); error in m versus the error in α (e); error in m
versus m0 (f).
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Figure 5. Inversion of experimental data. The solutions obtained by our method and the DIRECT
method are connected by a segment (a); �n1 versus �r (b). The mean values of r and n1 are
1.844 μm and 1.603. The mean absolute errors in r and n1 are 0.0038 μm and 0.0038.

Table 1. Mean absolute errors.

Noisy spheresa Ideal spheroids

Error in α 0.15 0.165
Error in m 0.0057 0.0058

a Taking the average, we drop the few particles with |α1 − α0| > 1 or
|m1 − m0| > 0.02 for which the algorithm failed.

4.6. Experimental data for polystyrene spheres

The experimental data I(θ j), j = 1, . . . , 128, were acquired using the scanning flow
cytometer for 751 polystyrene particles. The particles are practically spherical in shape.
According to the producer’s data, the mean radius r is 1.964 μm (α = 25) ±4%. The
absolute refractive index n1 of bulk polystyrene at λ = 0.66 μm equals 1.185 (m = 1.58).
Since the exact parameters in this case are unknown, to verify the results, we processed the
same data by another method. Namely, we used the optimization method in which the residual
is minimized by means of the global search method DIRECT (see [15–17]). Figure 5(a) shows
the parameters r and n1 of particles found by both methods. The corresponding points are
connected by segments. Figure 5(b) shows the difference �n1 in n1 versus the difference �r
in r.

5. Conclusion

In this paper, we propose an algorithm for the numerical solution of the inverse Mie problem
with data acquired using a scanning flow cytometer. The problem reduces to the analysis of a
strongly nonlinear map of finite-dimensional spaces. The algorithm comprises two parts.

• The preliminary part consists in the analysis of the direct map and its partial derivatives
and construction of the set of good starting points. As a byproduct we find the domain in
the parameter space where the problem can be solved in practice. The routines of this part
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of the algorithm require a large amount of computation but need to be carried out only
once for a particular type of direct map.

• Inversion of particular scattering data by the optimization method with the minimization
of the residual functional by a gradient method using the constructed set of starting points.

Numerical experiments show that the second part requires minimum computations (see
figure 2(b)).

Observe that implementation of this approach requires knowledge of the partial derivatives
of the direct map. In the case of the Mie, they are found by explicit formulas.

Apparently, our approach can be used for the solution of the inverse scattering problem
with a greater number of parameters (for example, for coated spherical particles or nonspherical
particles with partial symmetry).
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