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We introduce a numerical solution of the inverse light-scattering problem for a single non-

absorbing spherical particle. The solution is implemented by global optimization at

preliminary constructed database of light-scattering patterns. We propose an adaptive

method for database construction, which aims both at providing satisfactory local accuracy

and at avoiding large errors of the inverse map. Several databases were constructed varying

the required accuracy of solution of the inverse problem and parameters used to

characterize a sphere. We tested accuracy of the method on synthetic data for spheres

with and without noise, on synthetic data for slightly prolate and oblate spheroids, and on

experimental data of polystyrene microspheres measured with a scanning flow cytometer.

The constructed databases have shown appropriate results in determination of the size and

refractive index of a sphere from the angle-resolved light scattering with given accuracy.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of single particle characterization from light
scattering arises in different fields, including astronomy,
remote sensing, and analysis of aerosols and emulsions [1].
Optical methods play an important role in solution of this
problem. These methods in analysis of individual parti-
cles, especially biological cells, can be divided into the
following categories: (1) probe-field methods forming an
electromagnetic field in smallest volume (confocal micro-
scopy) and (2) full-field methods based on a detailed
analysis of light scattered by a particle. Most powerful
method that may be considered to belong to the second
category is flow cytometry. A flow cytometer allows the
ll rights reserved.
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measurements of light scattering from a single particle in
fixed solid angles [2] or in a form of an entire angle-
resolved light-scattering pattern (LSP) [3]. Recently Stro-
kotov et al [4] modernized the flow cytometer for mea-
surement of regular and polarized LSPs of individual
particles simultaneously. New facilities of flow cytometry
in the measurement of ample light-scattering data force
us to develop new approaches in a solution of the inverse
light-scattering (ILS) problem. Generally flow cytometers
measure individual particles with a rate of 1000 particles
per second that forms an extra requirement for the
solution of the ILS problem—the fast determination of
particle parameters (characteristics) from LSPs [5].

At present a practical analytical solution of the ILS
problem for a single particle is unavailable. The most
successful attempt is the result for spheres that allows
determination of its parameters from the Mie scattering
amplitudes, which include both the amplitude and phase
components of a scattering field, measured over the
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whole angular interval [01,1801] [6]. However, such com-
plete measurements cannot be performed with flow
cytometry.

The alternative approaches are to solve the inverse
problem numerically. Spectral decomposition methods
[7–9] allow one to determine the size of a sphere from
the Gegenbauer of Fourier spectrum of the LSP. However,
it provides no information about the refractive index.
A parametric solution [10] is based on dependence of
particle parameters on the phase-shift and fringe pitch of
LSPs. It provides satisfactory accuracy only for spheres
and is sensitive to the experimental noise [5]. Neural
networks were also used to characterize single spheres
[11–13]. This method requires only a learning sample of
calculated LSPs and it was successfully used on experi-
mental data of polystyrene spheres and spherized red
blood cells [11]. However, application of neural networks
is still an art, which requires fine-tuning of internal
parameters for the particular scattering problem. That is
why it has not been yet applied to non-spherical particles.

The most general approach for characterization of
particles with relatively simple shape is optimization,
i.e. direct fitting of the experimental signal to the com-
puted LSPs. Oscillatory nature of the LSPs with strong
dependence on particle parameters calls for robust global
optimization techniques. In particular, stochastic global
optimization techniques [14,15] and the DiRect method
[15,16] were applied to spheres.

A similar problem, characterization of multi-layered
concentric spheres, was approached by multi-start
Levenberg-Marquardt [17] and the DiRect [18] methods.
However, optimization methods come at a great compu-
tational cost which becomes unbearable for non-spherical
particles, such as blood platelets and red blood cells, due
to increasing number of parameters to explore and much
slower computation of the LSP. New optimization meth-
ods have to allow determination of cell characteristics in
reasonable time to be included in common routine of
hematological analysis. Therefore, there is demand for
acceleration of the optimization methods using some kind
of preliminary exploration of a particular scattering pro-
blem. Since the problem of single particle characterization
usually has to be solved multiple times in a row (in flow
cytometry applications at least several thousand times),
one-time investment of large computational time should
be acceptable.

Conceptually the simplest approach for such accelera-
tion is to calculate a large database of LSPs and to solve
the ILS problem by the nearest-neighbor interpolation. In
particular, this method was applied to spheres [19],
spheroids [20] and biconcave disks [21,22]. However, in
all cases of non-spherical particles the accuracy of the
solution was not reliably assessed. The main problem of
this approach, not addressed in the mentioned papers,
is finding the optimum structure and size of the database.
One should strike a compromise between computational
time, both for the construction of the database and for
each interpolation, and the accuracy of solution of the
inverse problem. While a ‘large enough’ database may
work for spheres, a careful compromise is required for
practical feasibility of characterization of non-spherical
particles. It is complicated by variability of sensitivity of
the LSP to the particle parameters over their domain,
calling for variable density of the database. Moreover,
there may be a certain threshold in the dependence of
interpolation error on grid density due to oscillatory
nature of the LSP. Above this threshold the error con-
tinuously decreases with increasing density, as typical for
interpolation. But below the threshold the errors abruptly
increase to the values comparable with the size of the
whole parameter domain (see Section 3). A related ques-
tion is how large experimental noise is acceptable for a
particular database.

Optimality of the interpolation database was pre-
viously addressed for a different problem, detecting
defects in 2D systems [23,24]. However, the proposed
adaptive algorithm of database construction focused only
on interpolation error within the elementary cell, thus
implicitly assuming that database density is large enough.
There are also sampling methods based on nearest-
neighbor interpolation [25,26], which share similar ideas.
However, they construct a set of samples for a particular
experimental signal instead of an universal database.

In this paper we propose a method to adaptively
construct a database to characterize single particles from
measured LSPs. This method aims at providing satisfac-
tory uniqueness and local accuracy, avoiding large errors
of the inverse map and limitation of the database con-
structed. After a general description of the problem and
the method in Sections 2 and 3 respectively, we consider
the simplest model, a homogeneous sphere, for a practical
example in Section 4. In a recent paper [27] the inverse
Mie problem is solved by constructing a set of starting
points for the gradient-based optimization. This approach
is based on detailed and rigorous analysis of the map,
implementing LSP calculation, and its derivative, which
guarantees perfect accuracy at least for the noise-free
data. In contrast, this paper is based on the implicit
assumption that a relatively small number of LSPs is the
most complete information about the map one can obtain.
From the current practical viewpoint this assumption
seems to be valid for all non-spherical particles. There-
fore, the method proposed in this paper should be
applicable to many particle models described by a few
parameters, but with no complete rigor due to the
discreteness of the analysis.
2. Problem statement

The direct scattering problem under consideration
consists in determination of the LSP from given para-
meters of a particle. It is implemented by a map f: X-Y,
where XCRp is a domain of parameters of a particle, YCRd

is a domain of LSP and dZp. We assume that f is a
C1-smooth and one-to-one map, whose value can be
obtained (with sufficient accuracy) for any point in X. In
particular, for a sphere the map is implemented using the
Mie theory [28], which provides an analytical solution in
terms of infinite series. Specifics of the Mie theory are also
discussed in [27]. Typical LSP’s for spherical particles,
defined by Eq. (12) below, are presented in Fig. 1.
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Fig. 1. The light-scattering profiles of spheres for several different size

parameters a and refractive indices m.

K.V. Gilev et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 202–214204
Let us denote xy ¼ f�1
ðyÞ, y 2 f ðXÞ. The properties of

f imply that f �1 is continuous. To incorporate experimental
data with noise we extend f�1 to the whole Rd

g : Rd-X, xd ¼ gðyÞ ¼ arg min
x2X

Jy�f ðxÞJ, ð1Þ

which is an optimization problem with respect to the
L2-norm in the space of LSPs. However, we note that other
norms can also be used. We also note, that our assumptions
imply that the noise-free problem is (relatively) well-posed.
This is discussed in more details in [27], including numerical
analysis of the Jacobian of f.

The problem is to create a database (lookup table) to
approximate map g (to determine particle parameters)
with given accuracy. Although, a detailed database can be
constructed for the inverse problem for sphere considered
in this paper, this is expected to be computationally
prohibitive for more complex particle shapes with greater
number of parameters. For a sparse database even the
linear interpolation may be unsuitable, therefore the
nearest-neighbor interpolation seems to be generally the
most reliable choice. The latter is further used in this
paper, and can be defined as global optimization over
database

g1 : Rd-X1,x1 ¼ g1ðyÞ ¼ arg min
x2X1

Jy�f ðxÞJ, ð2Þ

where X1CX is a finite set of database points (their
parameter values).

The error in the solution can be estimated as

Jxy�x1JrJxy�xdJþJxd�x1J,

where ed ¼ Jxy�xdJ represents the noise error,
ed ¼ Jxd�x1J represents the discretization error. A careful
consideration of experimental noise lies outside the scope
of this paper, so we assume that noise is small enough,
i.e., experimental LSPs lie in a ‘small neighborhood’ of f(X),
in which g is still continuous.

3. Algorithm for construction of interpolating database

Initially, the domain of parameters is normalized to be
the unit hypercube, so influence of parameters is balanced
to some extent. The proposed algorithm is adaptive and is
based on subsequent division of the parameter domain
into the rectangular cells (hyperrectangles) whose centers
constitute the database according to the rules described
further. New points are added to the database as a result
of division of cells into smaller hyperrectangles. More
specifically, we use the same structure of cells and
division rules as in the global-optimization method
DiRect [16]. According to these rules, a cell is divided
along its largest size into three equal parts. Then the
center of the central part coincides with the center of the
original cell, and only two points together with newly
calculated values of f (LSPs) are added to the database.
If there are several equal largest sizes then division is
performed along each of them serially.

Particular structure of the database is chosen from
purposes of usability and simplicity of implementation.
Moreover, it addresses particle parameters almost inde-
pendently of each other, which is beneficial when para-
meters have very different physical significance, typical
ranges, and influence on the LSP. However, the algorithm
described below also applies to any other structure, e.g.,
division into simplices [23].

Let us further define two neighborhoods for any point
xAX:
1.
 N(x) is discrete set of neighbors in the database, i.e.,
centers of those hyperrectangles that touch by facets
the hyperrectangle around x.
2.
 B(x,e) defined as

Bðx,eÞ ¼ fu 2 X 9uj�xj9oej, 1 j¼ 1,. . .,pg:
��� ð3Þ

The superscript j stands for the j-th component of a vector
in X, and e is a p-component vector defined prior to
constructing the database. Eq. (3) defines a ball with
respect to the LN-norm with preliminary rescaling of
the parameters (dividing them component-wise by e).
This particular norm is chosen in contrast to the L2-norm
due to possible incommensurability of different para-
meters discussed above. However, the algorithm may
incorporate any other norm through corresponding
change of Eq. (3).

The database, a set of pairs (x1,f(x1)), x1AX1, is con-
structed iteratively. At each step the database (each
element x1) is tested against condition:

8x1 2 X1 8u 2 Nðx1Þ
8v 2 X1

Bðx1,eÞ
Jf ðuÞ�f ðx1ÞJoJf ðvÞ�f ðx1ÞJ: ð4Þ

If it is not satisfied the hyperrectangle centered at x1 is
divided further. First, this condition implies that 8x1AX1

N(x1)CB(x1,e), i.e. the database needs to be sufficiently
dense with respect to the distance between neighboring
points in the parameter space, compared to the prede-
fined accuracy e. Second, condition (4) states that the LSPs
of all neighboring to x1 points in the database should be
closer than the LSPs of all non-neighboring points outside
the larger neighborhood B(x1,e).

Construction of the database starts with an
arbitrary division of the domain X into hyperrectangles.
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The domain X itself does not need to be rectangular; it can
be any connected region composed of hyperrectangles,
satisfying the structure of the DiRect algorithm [16]. Our
assumptions on f and g imply that the algorithm will
converge after a finite number of steps, producing a
database whose every element satisfies (4). Let us addi-
tionally define several distances in the space of LSPs:

dðxÞ ¼ inf
u2X\Bðx,eÞ

Jf ðuÞ�f ðxÞJ,

d1ðxÞ ¼ min
u2X1\Bðx,eÞ

Jf ðuÞ�f ðxÞJ,

d2ðxÞ ¼ max
u2NðxÞ

Jf ðuÞ�f ðxÞJ: ð5Þ

where d(x) is error radius in the data space, d1(x) is error
radius over database, d2(x) is a distance to the most
distant neighbor. A schematic interpretation of definition
(5) is presented in Fig. 2.

Then condition (4) is equivalent to

8x1 2 X1 d2ðx1Þod1ðx1Þ, ð6Þ
Fig. 2. Schematic interpretation of definition (5).

Fig. 3. Schematic description of the proposed algorithm. A filled circle represent

the largest distance to a neighbor d2(x).
which must be satisfied for a database after the construc-
tion is complete. Last condition is also illustrated in Fig. 2.

Formally, the algorithm for database construction can
be expressed as follows:

Normalize the domain to be enclosed in the unit hypercube

Generate initial points of database X1

Do

{

Determine the set S of points that do not satisfy

condition (4)

For all xAS

{

{Divide hyperrectangle corresponding to x

into sub-rectangles

}

} while (SaØ)

For all x1AX1 calculate d2(x1).

Several steps of the process are illustrated in Fig. 3 for
a very simple model map L: X-R2, XCR1. This map is a
parameterization of a curve L with a single variable x.
Here the value of e is chosen so that for the database at
step 1 geometrical sizes of N(x) and B(x,e) are approxi-
mately equal. Two circles are drawn around L(x0): the
filled one with radius d1(x0) and the dashed one
with radius d2(x0). In this particular case the d1(x0) is
the same as the smallest distance to non-neighbors. At
step 1 d1(x0)od2(x0), which leads to refinement of the
database. At step 2, (d2(x0)�d1(x0)) became smaller than
at previous step but still positive. At step 3, as a result of
an additional division, d1(x0)4d2(x0), i.e. condition (6) is
satisfied. After the final step (Fig. 3) condition (6) is
equivalent to the statement that a dashed circle around
any point does not contain database points from the
distant parts of the curve.
s the smallest distance to a non-neighbor d1(x), a dashed circle represents



Fig. 5. Schematic interpretation of conditions (9) and (10).

Fig. 6. An example of database that satisfies (4) but not (10).
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From a practical viewpoint a desirable property of g1 is
its satisfactory accuracy on the whole f(X):

8x 2 X g1ðf ðxÞÞ 2 Bðx,eÞ: ð7Þ

Diagram interpretation of the latter condition is pre-
sented at Fig. 4.

However, we know neither the values of f outside X1

nor any bounds on its derivative. This implies that any
condition on the database can be neither necessary nor
sufficient for (7). In other words, condition (6) or any
similar one can only imply anything about g1 over f(X1),
while condition (7) or any similar practical requirement is
always satisfied over f(X1), since 8x1AX1 g1(f(x1))¼x1.
Nevertheless, define

ZðxÞ ¼ fx1 2 X19Jf ðx1Þ�f ðxÞJod1ðxÞg, ð8Þ

which is a minimal set of points that has to be removed
from X1 to make correspondingly reduced g1 violate
condition (7) at x. By construction, 8x1AX1 x1AZ(x1)C
B(x1,e). Then condition (4) is equivalent to N(x1)CZ(x1).
Thus after the final construction step the database is
redundant in the sense, that it is required to remove at
least x and N(x) from X1 to break condition (7) at x.

Once the division is complete, we can estimate the
sensitivity of the LSP to particle characteristics using the
quantities defined in Eq.(5). All of them are positive due to
continuity of g. Moreover, d1(x) is a non-smaller discrete
approximation to d(x), which in turn is an important
measure that guarantees a certain accuracy of the inverse
map:

8u, x 2 X Jf ðuÞ�f ðxÞJodðxÞ ) u 2 Bðx,eÞ: ð9Þ

A desirable property of d1(x) is a similar statement

8u, x 2 X Jf ðuÞ�f ðxÞJod1ðxÞ ) u 2 Bðx,eÞ ð10Þ

which, however, cannot be proven due to discrete nature
of available information (see the discussion above).
In other words, there is no guarantee that d2(x)od(x),
although it may be so for many points in the database.
This is illustrated in Fig. 6. No divisions around x0 are
required by condition (6), because d2(x0)od1(x0). How-
ever, d(x0) is less than both d2(x0) and d1(x0), so for some
points x on the arc between x3 and x4 99f(x)� f(x0)99o
d2(x0) does not imply xAB(x0,e).

A schematic interpretation of conditions (9) and (10) is
presented in Fig. 5.

There are several ways to sharpen condition (6) to
better detect situations like shown in Fig. 6, e.g.:
Fig. 4. Graph interpretation of condition (7).
�
 considering not only points from the database for the
definition of d2(x), but also simplices constructed on
any set of neighboring points;

�
 replacing the inequality in (6) by 2d2(x)od1(x).

However, as we discussed above, strong assumptions,
e.g. about derivatives of f, are required to make any such
method rigorous, thus we leave them for a future
research.

Values of d2 can be used to test the reliability of the
inverse solution. If the solution is such that

Jy�f ðg1ðyÞÞJrd2ðg1ðyÞÞ, ð11Þ

then it is likely that the true solution g(y) belongs to
B(g1(y),e), taking into account the limitations discussed
above. A schematic interpretation of the latter condition is
presented at Fig. 7.

However, violation of condition (11) does not neces-
sarily imply that solution is largely wrong. So test (11) is
expected to be useful only in a statistical sense when
applied to large set of data. Its applicability to experi-
mental data with noise is even more arguable, because
then yaf(g(y)) and hence 99y� f(g1(y))99 is no more a
direct measure of closeness of g(y) and g1(y). A correction
of condition (11) to alleviate this problem is possible, but
it requires detailed knowledge of the structure of



Fig. 7. Schematic interpretation of condition (11).
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experimental noise, which lies out of scope of this paper.
So when processing experimental data below, we present
results both with and without using condition (11) as a
threshold.

4. Implementation

4.1. Construction of the databases

In this paper we construct a database for homoge-
neous spherical particles. The LSP is defined as a uniform
discretization of a function

IðyÞ ¼
wðyÞ
2p

Z 2p

0
djS11ðy,jÞ: ð12Þ

In the range of yA[101,701] using k¼128 points. S11 is an
element of the Mueller scattering matrix [28], y and j are
the polar and azimuth angle respectively, and w(y) is the
weighting function [18]

wðyÞ ¼
11

y
exp �2ln2 y

541

� �� �
: ð13Þ

Calculation of a single value of map f for spheres using
the Mie theory [28] takes several milliseconds on personal
computer. We note that a LSP is measured for a single
fixed wavelength.

A sphere is characterized by d¼2 parameters: the size
parameter aA[5,40] and the refractive index (relative to
the surrounding medium) mA[1.05,1.3]. The size para-
meter is connected with radius r as a¼2prn0/l, where the
wavelength l of the incident light is 660 nm; and the
refractive index of surrounding media (buffer solution) m0

is 1.337. The following required accuracy is chosen from
practical reasons: da¼5 and dm¼0.1, so after normal-
ization into the unit hypercube e¼(e1,e2)¼(0.14,0.4). The
process is initialized by 9�9 uniform grid and finally
leads to database C with number of points Ndb equal to
9366 points. The corresponding set P1 is presented in
Fig. 8(C) together with a rectangle e1

� e2.
We also study the dependence of the database structure

on chosen particle parameters and required accuracy e.
For this purpose we constructed five more databases.
Parameters of all databases are summarized in Table 1
and the databases themselves are shown in Fig. 8.
Databases A and B differ from C by lack of accuracy tests
for m and a respectively. That is equivalent to setting
respective component of e equal to 1. Database D is a
refined version of C with improved accuracy of both
parameters. Alternatively a sphere can be characterized
with a and the phase-shift parameter r¼2a(m�1)A
[0.5,24]. These parameters have been shown to better
correlate with the LSP than a and m [10]. Databases E and
F are constructed in coordinates (a,r), but only half of the
square in this parameter space is covered, which is
approximately an image of the original square in (a,m)
coordinates. Since dr¼2[admþ(m�1)da], no single value
can exactly correspond to used da and dm. If the values of
the latter are taken the same as for database C, then dr
varies from 1.5 to 11. We chose these two limiting cases
for construction of databases F and E respectively.

Note that the choice of parameters has a great impact
on the structure and size of the database. As expected,
total number of points in the database inversely correlates
with e. Moreover, for all databases the density signifi-
cantly varies over P, which proves the need for an
adaptive procedure.

4.2. Testing of the databases

4.2.1. Exact synthetic data for spheres

Constructed databases were tested on a set of 1000
theoretical LSPs of homogenous spheres with parameters
randomly chosen in P. For all databases we have used
threshold (11), i.e. the data, for which result has not
passed the test, were discarded. However, we have also
tried the database C without the threshold; corresponding
results are denoted by C1. We denote the number of LSPs
(of the initial 1000) that pass the threshold as Nth. We also
process the same data with the DiRect method. This is a
global optimization method which is supposed to give the
reference (almost exact) solution albeit at a relatively
large computational cost. The summary of the results,
including mean absolute errors (MAE) of a and m and
values of Nth, are presented in Table 2 together with
results for all other test cases. An immediate conclusion
from this table is that the proposed method is about 100
times faster than the rigorous global optimization tech-
nique (DiRect) for a single LSP. It is reasonable to assume
that computational speed of the latter is comparable to
that of other global optimization methods, e.g. [14,15].
Therefore, the method proposed in this paper is also much
faster than other published methods to characterize
spheres from LSPs.

Distribution of errors for this particular case is shown
in Fig. 9. The errors of the DiRect algorithm are negligibly
small, which is expected for noise-free data. Note that
NthZ966 for these data; hence, there is almost no
difference between C and C1. Going from A to D the errors
decrease in correlation with increasing Ndb. Both data-
bases E and F constructed in coordinates (a,r) are gen-
erally less accurate than other databases of comparable
sizes (although there is no direct analog for database E).
These conclusions are also supported by values of MAE
presented in Table 2. Another general conclusion is strong
negative correlation between errors in a and m, which is
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discussed in detail in [27]. For databases E and F some
points with the greatest errors (less than 2% of the total
amount of points) are not shown in Fig. 9 because they
fall out of plot bounds.

Fig. 10 shows 100 largest (in terms of 9da9þ9dm9)
errors for each database (method) in even more detail,
indicating both actual and calculated values of the para-
meters. In particular, it shows that the greatest errors for
databases E and F occur for small a and large m and are
mainly along the m-axis.

4.2.2. Noisy synthetic data for spheres

The same LSPs as used in previous test case were
contaminated with the additive white Gaussian noise.
The amplitude s of the noise is chosen independently
for every LSP as a random value in the range [0,0.2]
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multiplied by the root-mean-squared value of the
corresponding LSP.

These modified LSPs were processed by all databases
and the DiRect method. Distribution of obtained errors
and detailed review of 100 largest of them are shown in
Figs. 11 and 12 respectively. For databases C, E, and F and
for the DiRect method some points fall out of plot bounds
in Fig. 11. The errors for all databases except C1 is
comparable to that for the noise-free data but at a cost
of discarding about 80% of input data. Moreover, Nth

correlates with errors and inversely correlates with Ndb,
which can be explained through relation of all these
values to d2. If the threshold is not used, then errors are
about twice greater (compare C1 and C). This means that
discretization errors (map g1, implemented by database
C1, without noise) and errors due to noise (map g,
implemented by DiRect method, with noise) do add up
for results of database C1. The fact that database D is more
accurate than the DiRect method is delusive, since the
errors of the former are calculated from a smaller set of
more accurate LSPs.

Pros and cons of using the threshold largely depend on
the particular application and the structure of the noise.
In particular, an important open question is whether Nth

LSPs are representative for the whole set of measure-
ments (see also Section 4.2.3). However, some kind of
threshold is clearly desirable when the noise is large
enough to render map g discontinuous. In this case, even
exact optimization may lead to a different part of the
Table 1
Parameters of databases constructed with the adaptive algorithm.

Database da dm or dr e1 e2 Ndb

A 5 dm¼0.25 0.14 1 3254

B 35 dm¼0.1 1 0.4 8664

C 5 dm¼0.1 0.14 0.4 9366

D 2 dm¼0.05 0.057 0.2 16074

E 5 dr¼11 0.14 0.47 1725

F 5 dr¼1.5 0.14 0.064 7769

Table 2
Summary of the results of processing of synthetic and experimental data for s

A B C

Ndb 3254 8664 9366

Timea (ms) 7 18 19

Ideal sphere MAE(a) 0.17 0.16 0.14

MAE(m), 10�2 0.44 0.39 0.34

Nth 988 973 984

Noisy sphere MAE(a) 0.19 0.22 0.17

MAE(m), 10�2 0.44 0.50 0.39

Nth 234 213 193

Ideal spheroid MAE(a) 0.23 0.22 0.20

MAE(m), 10�2 0.56 0.51 0.46

Nth 976 904 913

Experiment mean(a) 23.65 23.42 23.35

mean(m) 1.193 1.196 1.194

Nth 238 115 90

a Time for computing a single inverse solution (value of g1).
manifold f(X) compared to the location of the true value.
Hence, obtained errors of parameters may be comparable
to the size of the whole domain X. That is exactly what is
shown in Fig. 12 (DiRect). This problem can be partly
alleviated by determining the probability distribution
function over X for each LSP instead of a single nearest
point, which can be done through the Bayesian inference
[18]. However, the information obtained from such noisy
data is still very small.

In case of Fig. 12 an optimal threshold should filter out
only about 20 LSPs that result in large errors both for
DiRect method and for database C1. So the threshold (11),
which filters out about 800 LSPs, is way too restrictive.
We leave a problem of estimating the optimal threshold
from the constructed database for a future research,
although Bayesian approach [18] may provide an answer.

4.2.3. Exact synthetic data for spheroids

We also studied stability of the inverse solution with
respect to particle deformations. These so-called model
errors are always present in real applications, when a
simple shape model is used. Each sphere in the original
test set was replaced by an equi-volume spheroid with
axes ratio randomly and independently chosen in
[0.9,1.1]. Orientation of each spheroid (its symmetry axis)
with respect to incident direction is chosen randomly in
[01,901]. Calculation of LSPs of spheroids was performed
with the T-matrix method [29].

These LSPs were processed by all databases and the
DiRect method. Distribution of obtained errors and
detailed review of 100 largest of them are shown in
Figs. 13 and 14 respectively. Again, for databases E and F
a minor number of points fall out of plot bounds in Fig. 13.
Overall, the effect of shape deformation on LSPs is less
than that of the Gaussian noise in the previous test case.
Results of DiRect are reliable for all input LSPs, and
corresponding MAEs are about 1.5 times smaller than
for the spheres with noise (Table 2). Also, majority of the
LSPs pass the threshold for all databases (NthZ872). That
is why MAEs for the databases approximately equal to
pheres.

C1 D E F DiRect

9366 16074 1725 7769 –

19 36 5 15 1550

0.14 0.11 0.26 0.18 0.002

0.35 0.24 0.94 0.64 0.01

1000 982 972 966 1000

0.30 0.15 0.28 0.20 0.16

0.71 0.28 1.11 0.77 0.41

1000 148 357 219 1000

0.20 0.17 0.31 0.24 0.12

0.49 0.39 1.03 0.77 0.32

1000 872 969 914 1000

23.36 23.66 23.36 23.40 23.86

1.195 1.194 1.205 1.197 1.207

751 149 541 325 751



-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
-2

er
ro

r o
f m

-2
-0.06

-0.04

-0.02

0.00

0.02

0.04

er
ro

r o
f m

error of α error of α

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

error of m
 

-0.06

-0.04

-0.02

0.00

0.02

0.04

error of α

-0.06

-0.04

-0.02

0.00

0.02

0.04
(DiRect)

error of m
 

error of α

-1 0 1 -2 -1 0 1 2 -2 -1 0 1 -2 -1 0 1 2

-1 0 1 -2 -1 0 1 2 -2 -1 0 1 -2 -1 0 1 2

Fig. 9. Errors in determination of parameters using constructed databases A–F and DiRect algorithm to process 1000 theoretical LSPs of spheres with

random parameters from domain P (see text for details).

1.05

1.10

1.15

1.20

1.25

1.30
5 10 15 20 25 30 35

m

5 10 15 20 25 30 35 40

1.05

1.10

1.15

1.20

1.25

1.30

5 10 15 20 25 30 35
1.05

1.10

1.15

1.20

1.25

m

α
5 10 15 20 25 30 35 40

1.05

1.10

1.15

1.20

1.25

α

5 10 15 20 25 30 35 5 10 15 20 25 30 35 40

1.05

1.10

1.15

1.20

1.25

1.30

m

5 10 15 20 25 30 35
α

5 10 15 20 25 30 35 40
1.05

1.10

1.15

1.20

1.25(DiRect)

m

α

Fig. 10. Same as Fig. 9 but showing 100 largest errors as arrows with head and tail corresponding to the true and calculated values respectively.
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those for the noise-free spheres plus a constant amount
(0.06 for a and 0.0012 for m). Finally, we can conclude
that both databases and DiRect are tolerant to shape
deformation of the considered magnitude.

4.2.4. Experimental data for polystyrene spheres

Finally we tested the databases on experimental data.
The LSPs of polystyrene microspheres (Invitrogen C37253)
in the buffer solution were measured by a SFC [4].
The angular range, the wavelength, and the refractive
index of the medium were the same as described in
Section 4.1. According to the producer’s data, mean a of
microspheres is 25 with coefficient of variation 4%.
Relative refractive index of bulk polystyrene at this
wavelength is 1.185 [30], while 1.183 produced the best
fit to diffuse reflectance and transmittance of a suspen-
sion of 1 mm polystyrene microspheres [31].

Calculated distributions of the sample over a and m are
shown in Fig. 15. Corresponding mean values and Nth are
given in Table 2. Results of DiRect generally agree with
reference values cited above. However, there are small
systematic differences due to distortion of experimental
LSPs caused by variation of flow speed and particle
position in the flow of the SFC. Results of all databases
are rather accurate within the experimental errors them-
selves. Moreover, mean of a converge to its value
obtained by DiRect with increasing Ndb. However,
mean of m seem to converge to value 1.194, which is



-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06
-2 -1 0 1

er
ro

r o
f m

-2 -1 0 1 2

-2 -1 0 1
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

er
ro

r o
f m

error of m
error of m

error of � error of � error of � error of �
-2 -1 0 1 2

0.06

0.04

0.02

0.00

0.02

0.04

0.06
-2 -1 0 1 -2 -1 0 1 2

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

-2 -1 0 1
0.06

0.04

0.02

0.00

0.02

0.04

-2 -1 0 1 2
-0.06

-0.04

-0.02

0.00

0.02

0.04(DiRect)

Fig. 11. Same as Fig. 9 but for LSPs of spheres with added noise.
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Fig. 12. Same as Fig. 10 but for LSPs of spheres with added noise.

K.V. Gilev et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 202–214 211
different from the result of DiRect (1.207) and is actually
closer to the reference values. However all these differ-
ences are much smaller than the required accuracy e, and
hence may constitute a discretization artifact. Unlike all
previous test cases, Nth shows little correlation with Ndb,
emphasizing the need for a more sophisticated threshold.

Typical experimental LSP is shown in Fig. 16 together
with corresponding fits by the DiRect method and data-
base C. One can see that the discretization error of the
database (difference between two fits) is smaller than the
experimental noise (distortion).
5. Conclusion

The adaptive method proposed in this paper allows
one to create a non-uniform database to approximate
highly-nonlinear map with a given accuracy without
access to derivatives. Nearest-neighbor interpolation on
the database is further used as an approximate inverse
map. The main novelty of this method is that possible
large errors of the inverse map caused by two points
distant in the argument space but close in the image
space, are detected and addressed. Such behavior of direct
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map often occur, e.g., in inverse scattering problems and
significantly deteriorates performance of many other
methods to solve these problems.

We tested the proposed method for solution of ILS
problem of a non-absorbing homogeneous sphere using
the light-scattering patterns measured with the scanning
flow cytometer. The results agree with a reference global-
optimization method DiRect both for synthetic (with or
without noise) and experimental data. Moreover, we tested
the database against the model errors caused by shape
deformation of a sphere. The method contains a number of
options controlling the construction and usage of a
database. These options include a particular set of para-
meters to characterize the particle, norms in argument and
image spaces, shape of elementary cells to divide the
argument space into (hyperrectangles, simplices, etc.) and
subdivision algorithm, and threshold to indicate accurate
solution. Tuning of these parameters to maximize the speed
and accuracy of the inverse map remains an open problem.

In future we plan to apply this method to ILS problems
for more complicated particle shapes, such as spheroids,
cylinders, and biconcave disks. These problems are of
great practical interest for characterizations of blood
platelets, rod-shaped bacteria, and red blood cells.
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Adoption of this method into hematological analysis
should increase a power of characterization of blood cells
from physical characteristics.
Acknowledgment

This work was supported by grant from the program of
Presidium of the Russian Academy of Science, No 2009-
27-15, program of the Russian Government ‘‘Research and
educational personnel of innovative Russia’’ (contracts
P1039, P422, 14.740.11.0729, and 14.740.11.0921), by grant
from Government of Russian Federation 11.G34.31.0034,
and by the President of the Russian Federation Program
for State Support of the Leading Scientific Schools (grant
NSh-65387.2010.4).

References

[1] Mishchenko MI, Hovenier JW, Travis LD. Light scattering by
nonspherical particles: theory measurements, and applications.
New York: Academic Press; 2000.

[2] Givan AL. Flow cytometry: first principles. 2nd ed.. New York:
Wiley–Liss; 2001.

[3] Maltsev VP. Scanning flow cytometry for individual particle analy-
sis. Rev Sci Instrum 2000;71:243–55.

[4] Strokotov DI, Moskalensky AE, Nekrasov VM, Maltsev VP. Polarized
light-scattering profile—advanced characterization of nonspherical
particles with the scanning flow cytometry. Cytometry 2011;79A:
570–9.

[5] Maltsev VP, Semyanov KA. Characterisation of bio-particles from
light scattering.Utrecht: VSP; 2004.

[6] Ludlow IK, Everitt J. Inverse Mie problem. J Opt Soc Am A
2000;17(12):2229–35.

[7] Ludlow IK, Everitt J. Application of Gegenbauer analysis to light-
scattering from spheres. Theory. Phys Rev E 1995;51:2516–26.

[8] Min SL, Gomez A. High-resolution size measurement of single
spherical particles with a fast Fourier transform of the angular
scattering intensity. Appl Opt 1996;35:4919–26.

[9] Semyanov KA, Tarasov PA, Zharinov AE, Chernyshev AV, Hoekstra
AG, Maltsev VP. Single-particle sizing from light scattering by
spectral decomposition. Appl Opt 2004;43:5110–5.

[10] Maltsev VP, Lopatin VN. Parametric solution of the inverse light-
scattering problem for individual spherical particles. Appl Opt
1997;36:6102–8.

[11] Berdnik VV, Gilev KV, Shvalov A, Maltsev V, Loiko VA. Character-
ization of spherical particles using high-order neural networks and
scanning flow cytometry. J Quant Spectrosc Radiat Transfer
2006;102:62–72.

[12] Berdnik VV, Loiko VA. Retrieval of size and refractive index of
spherical particles by multiangle light scattering: neural network
method application. Appl Opt 2009;48:6178–87.

[13] Wang Z, Ulanowski Z, Kaye PH. On solving the inverse scattering
problem with RBF neural networks: noise-free case. Neural Comput
Appl J 1999;8:177–86.



K.V. Gilev et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 131 (2013) 202–214214
[14] Zakovic S, Ulanowsk ZJ, Bartholomew-Biggs MC. Application of
global optimization to particle identification using light scattering.
Inverse Probl 1998;14:1053.

[15] Bartholomew-Biggs MC, Ulanowski ZJ, Zakovic S. Using global
optimization for a microparticle identification problem with noisy
data. J Global Optim 2005;32:325–47.

[16] Jones DR, Pertunnen CD, Stuckman BE. Lipschizian optimization
without the Lipschitz constant. J Optim Theory Appl 1993;79:
157–81.

[17] Zharinov AE, Tarasov PA, Shvalov AN, Semyanov KA, van Bockstaele
DR, Maltsev VP. A study of light scattering of mononuclear blood
cells with scanning flow cytometry. J Quant Spectrosc Radiat
Transfer 2006;102:121–8.

[18] Strokotov DI, Yurkin MA, Gilev KV, van Bockstaele DR, Hoekstra AG,
Rubtsov NB, et al. Is there a difference between T- and
B-lymphocyte morphology? J Biomed Opt 2009;14:064036–312.

[19] Li W, Jaffe JS. Sizing homogeneous spherical particles from
intensity-only angular scatter. J Opt Soc Am A 2010;27:151–8.

[20] Kolesnikova IV, Potapov SV, Yurkin MA, Hoekstra AG, Maltsev VP,
Semyanov KA. Determination of volume, shape and refractive index
of individual blood platelets. J Quant Spectrosc Radiat Transfer
2006;102:62–72.

[21] Yurkin MA, Semyanov KA, Tarasov PA, Chernyshev AV, Hoekstra
AG, Maltsev VP. Experimental and theoretical study of light
scattering by individual mature red blood cells with scanning flow
cytometry and discrete dipole approximation. Appl Opt 2005;44:
5249–56.
[22] Yurkin MA. Discrete dipole simulations of light scattering by blood
cells. PhD thesis. University of Amsterdam; 2007.

[23] Pavo J, Gyimothy S. Adaptive inversion database for electromag-
netic nondestructive evaluation. NDT&E Int 2007;40:192–202.

[24] Gyimothy S, Pavo J. Qualification of the inverse problem of defect
reconstruction using optimized mesh database. COMPEL 2005;24:
436–45.

[25] Mosegaard K, Sambridge M. Monte Carlo analysis of inverse
problems. Inverse Probl 2002;18:R29.

[26] Yang K, Chapman NR, Ma Y. Estimating parameter uncertainties in
matched field inversion by a neighborhood approximation algorithm.
J Acoust Soc Am 2007;121:833–43.

[27] Dyatlov GV, Gilev KV, Yurkin MA, Maltsev VP. An optimization
method with precomputed starting points for solving the inverse
Mie problem. Inverse Probl 2012;28:045012.

[28] Bohren CF, Huffman DR. Absorption and scattering of light by small
particles.New York: Wiley; 1983.

[29] Mishchenko MI, Travis LD. Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly
oriented, rotationally symmetric scatterers. J Quant Spectrosc
Radiat Transfer 1998;60:309–24.

[30] Kasarova SN, Sultanova NG, Ivanov CD, Nikolov ID. Analysis of the
dispersion of optical plastic materials. Opt Mater 2007;29:
1481–90.

[31] Ma X, Lu JQ, Brock RS, Jacobs KM, Yang P, Hu X. Determination of
complex refractive index of polystyrene microspheres from 370 to
1610 nm. Phys Med Biol 2003;48:4165–72.


	An optimization method for solving the inverse Mie problem based on adaptive algorithm for construction of interpolating...
	Introduction
	Problem statement
	Algorithm for construction of interpolating database
	Implementation
	Construction of the databases
	Testing of the databases
	Exact synthetic data for spheres
	Noisy synthetic data for spheres
	Exact synthetic data for spheroids
	Experimental data for polystyrene spheres


	Conclusion
	Acknowledgment
	References




