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a b s t r a c t 

We developed a fast method to determine size and refractive index of homogeneous spheres from the 

power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cy- 

tometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero- 

frequency amplitude, and numerically inverted the map from the space of particle characteristics (size 

and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved 

only for particle size parameter greater than 11, and the inversion is unique only in the limited range of 

refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size 

parameter and particular definition of uniqueness. The developed method was tested on two experimen- 

tal samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the 

reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles 

with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit 

result than the estimated uncertainty of the latter. The spectral method also showed adequate results for 

synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which 

can be used to construct an inverse algorithm for any other experimental signals. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Light scattering is ubiquitous in nature and technology and is

often the only or the most feasible approach to characterize parti-

cles or particle systems [1] . Many characterization techniques ad-

dress the particle ensemble as a whole, due either to a large scat-

tering volume [2,3] or to the dense packing of individual compo-

nents [4] . However, they are inherently ill-posed in trying to re-

trieve the distribution of the ensemble over the particle charac-

teristics [2,5] . Single-particle techniques show greater promise in

detailed and robust characterization, at least in the controlled lab-

oratory conditions [6,7] . 

Successful single-particle characterization requires three ingre-

dients: measurement, simulation, and inversion. The typical mea-

sured signals consist of a few scalar values [8,9] , an angle-resolved

light-scattering pattern (LSP), [10,11] or a two-dimensional LSP

[12,13] . The simulation part benefits from several well-established

methods and open-source codes [4,14] . It is now easy to simulate
∗ Corresponding author. 
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ight scattering by almost any complex inhomogeneous particle,

hile the main complexity comes from the vastness of the mul-

idimensional space of possible particle characteristics [15,16] . The

ltimate solution for the inverse problem would be a direct imag-

ng (tomography) approach with no prior assumptions about the

bject. However, all existing attempts employ 2D LSPs for many

rientations of the same particle and either assume weak scatter-

ng (Rayleigh-Debye-Gans approximation) [17,18] or require phase

f the scattered field to be measured as well [19,20] . Otherwise,

ne has to assume a particle shape model a priori, reducing the

roblem to determining several characteristics of this model. Such

haracterization methods can be tentatively divided into 3 broad

ategories: nonlinear regression, machine learning, and parametric

compression) techniques. 

Nonlinear regression is based on the direct comparison of ex-

erimental signals (typically, LSPs) with simulated ones, using

ome norm of the difference (residual). Global minimization of

his residual is a challenging task with computational complex-

ty rapidly increasing with the number of shape characteristics

15,21] . This complexity can be partly concentrated into a one-

ime investment of computational power using precalculated (look-

p) database of LSPs [22–24] . This makes it possible to apply

http://dx.doi.org/10.1016/j.jqsrt.2017.04.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
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onlinear regression routinely for particles without spherical sym-

etry, such as red blood cells [25] , platelets [26] , and rod-shaped

acteria [27] . Moreover, in addition to the best-fit particle charac-

eristics one can construct confidence intervals for these character-

stics, i.e. evaluate the characterization errors [23,26,28] . 

Machine learning is an extremely broad class of methods, but

e discuss only neural networks as the most representative ex-

mple. Ideally, this approach should be able to automatically train

tself on a large set (database) of LSPs with known characteris-

ics and handle high-dimensional problems [29] . But, practically,

ts performance is hard to predict and it may require a lot of

ne tuning. So far the neural networks has only been used for

ight-scattering characterization of spherical particles [30,31] and

ed blood cells [32] , as recently reviewed in [33] . Moreover, those

ethods do not use the whole LSP, but only a number of parame-

ers derived from it. 

This compression of an experimental signal into several (two-

hree) parameters is central to the third class of characterization

ethods. The parameters are extracted either directly from the

easured signal, e.g. the LSP [34,35] or the time-resolved signal

36] , or from its Fourier [37,38] or Gegenbauer [39] spectrum. Al-

ernatively the amount of experimental data may originally be lim-

ted to only a couple of numbers [8,9] . The specific way to process

he signal parameters can vary a lot, but all parametric methods

ave very high speed in determining a small number of particle

haracteristics (typically, only the size and, sometimes, the refrac-

ive index). They are also potentially more stable to instrumental

oise and distortions, as well as to distortions of the optical model.

he most popular parametric method is the spectral sizing [40–

2] , which is based on almost linear relation between the size of a

phere and characteristic frequency of its LSP or, equivalently, the

osition of the main peak in the Fourier spectrum of the LSP. In-

erestingly, the spectral sizing of homogeneous spheres [43] can be

xtended with virtually no changes to estimation of diameters of

eukocytes [44] and red blood cells [45] , although the accuracy of

his estimation has not been thoroughly tested. Moreover, estima-

ion of sphere refractive index has been proposed (without assess-

ng the accuracy) in a limited range of size and refractive index,

sing the integral of the LSP as a second parameter [46] . 

Each of the three above classes has its pros and cons, and oc-

upies a certain application niche. This paper is devoted to the

ystematic development of the spectral method with the goal to

ully characterize a homogeneous sphere, i.e. to solve the inverse

ie problem both quickly and robustly. For that we compress the

hole measured LSP into two parameters of its power Fourier

pectrum, which are further transformed into two characteristics of

he particle. In Section 2 (and Appendix A ) we construct this char-

cterization method starting with a LSP measured with the scan-

ing flow cytometer (SFC) [11,43] . However, the provided details

hould enable one to repeat the whole procedure for any other

xperimental set-up and/or signal parameters. We also perform a

etailed theoretical analysis of the underlying map and applica-

ility (uniqueness) domain of the developed method. In Section 3

e describe two sets of experimental measurements, namely milk

at globules and spherized red blood cells, and a set of synthetic

ata for spheroids. Those data, affected by both instrumental noise

nd optical-model distortions, are used for thorough testing of the

haracterization method in Section 4 . We conclude the paper in

ection 5 . 

. Spectral characterization method 

In this Section we construct a method to determine both di-

meter d and refractive index n of a spherical particle from the

pectrum of its LSP. The main idea is to compress the whole LSP

pectrum into two parameters, to describe the direct problem as a
ap of particle characteristics into those parameters ( G : R 

2 → R 

2 ),

nd to invert this map by constructing an interpolant. To abstract

rom specific wavelength of the incident light λ and medium re-

ractive index n 0 we further describe the particle by its size pa-

ameter x = πdn 0 / λ ( d – sphere diameter) and relative refractive

ndex m = n / n 0 . We also limit ourselves to non-absorbing particles,

.e. assume real m . Moreover, we consider only m > 1, while the

ase of 0 < m < 1 is expected to be qualitatively similar. Allowing

 to take values on both sides of unity will, most probably, break

he uniqueness of the inverse problem in the whole range of par-

icle characteristics. 

.1. Power spectrum and its parameters 

Let us define the specific form of a LSP spectrum. We start with

he standard LSP, measured by the SFC: 

 ( θ ) = 

∫ 2 π

0 

d ϕ [ S 11 ( θ, ϕ ) + S 14 ( θ, ϕ ) ] , (1) 

here S is the Mueller scattering matrix [47] , θ and ϕ are the polar

nd azimuthal scattering angles, and S 14 ≡ 0 for ideal spheres. To

eep the discussion manageable we further only consider the LSP

n the range from θ1 = 10 ° to θ2 = 65 ° and apply the same spectral

ransformation as in [43] . Specifically, the LSP is multiplied by the

anning window function 

 (θ ) = sin 

2 

(
π

θ − θ1 

θ2 − θ1 

)
, (2) 

nd its power Fourier spectrum on this finite range is computed:

 ( q ) = 

∣∣∣∣ 1 

θ2 − θ1 

∫ θ2 

θ1 

d θ w (θ ) I(θ ) exp ( −2 π i qθ ) 

∣∣∣∣
2 

, (3) 

hich is normalized to be only weakly dependent on a partic-

lar choice of the angular range. The practical calculations are

erformed with the fast Fourier transform using uniform dis-

retization over N = 256 intervals with further zero-padding up to

 = 4096 points (to increase the spectral resolution): 

 ( q k ) = 

∣∣∣∣∣
1 

N 

N−1 ∑ 

j=0 

w ( θ1 + j�θ) I( θ1 + j�θ) exp 

(
−i 

2 π

M 

k j 

)∣∣∣∣∣
2 

, (4) 

here �θ = ( θ2 – θ1 )/ N and q k = k /( M �θ ). This procedure is illus-

rated in Fig. 1 , where we also defined the spectral parameters: lo-

ation ( L ) and amplitude ( A p ) of non-zero spectral peak and ampli-

ude of zero frequency ( A 0 ). L can also be called the main (angular)

requency, while A 0 is the squared average value of the windowed

SP – similar to the parameter used in [46] . The peak parameters

re determined by the quadratic fit with a window width of 15

oints (0.98 rad 

−1 ). While we conventionally use units of degree

or θ , we employ the dimensional SI units (rad 

−1 ) for q and L and

mit it further. Note also, that the Mueller matrix S and, hence, I

nd P are dimensionless. However, their scales (used in all figures)

re unambiguously defined by Eqs. (1) –( 4 ). In other words, arbi-

rary units are not used anywhere. 

Almost linear relation between x and L , with x / L roughly equal

o π , is well-known [43,48] and can be understood using sim-

le arguments of diffraction gratings or the Rayleigh-Debye-Gans

RDG) approximation [47] . The choice of the second parameter (to

educe m as well) is less obvious. Relative peak amplitude A p / A 0 

as been briefly discussed previously [43,45] ; here we also con-

ider both A 0 and A p separately. However, as shown in Section 4.1 ,

 0 is the most robust (insensitive) with respect to experimental

istortions of the LSP. Therefore, we base the production algorithm

n this parameter and use it as a primary example in the following

iscussion. The corresponding analysis for other two parameters is
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Fig. 1. Original (a) and windowed (b) LSPs and its power spectrum (c) for a sphere with x = 24 and m = 1.083 . 
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Fig. 2. Normalized (to zero frequency) power spectrum for x = 13 spheres with 

m = 1.15 and 1.10. Values of the contrast C are shown in the legend. 
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presented in Appendix A . While using additional spectral parame-

ters can definitely improve the performance of the algorithm, we

explicitly limit ourselves to using a single amplitude (i.e. in total

two spectral parameters). Apart from the simplicity of the final al-

gorithm, this allows us to visualize and analyze in detail the un-

derlying map G and to gain confidence in the solution in contrast

to, e.g., neural-net-type methods. 

We must stress that the spectral peak is not always present.

There are cases where it overlaps with a zero-frequency bump

( Fig. 2 ). To quantify this problem we introduce the Weber contrast:

 = 1 − A min 

A p 
, (5)

where A min is the minimum value to the left of the main peak

( C ≡ 0 if there is no minimum at all). The closer С comes to zero,

the greater the error becomes, especially in determining L from

real experimental data. The dependence of C on x and m is shown

in Fig. 3 , based on which we further limit ourselves to the range

x ∈ [11,100] and m ∈ [1,1.5]. The upper limit of x is rather arbitrary

and can be extended if needed, see Fig. 7 (a). 

2.2. Inverse problem and uniqueness of solution 

We construct a dense uniform grid (200 × 200) in the above-

mentioned range of x and m and calculate a LSP and spectral pa-

rameters for each grid point. 62 nodes of this grid fall into the
lack region in Fig. 3 and are omitted from further analysis. The

esulting values of L and A 0 are shown in Fig. 4 , while correspond-

ng results for A p and A p / A 0 – in Fig. A1 . However, we can con-

ider those results more generally – as a dense cloud in a four-

imensional space ( x,m,L,A 0 ). Then Fig. 4 depicts two 3D projec-

ions of this space, while another two projections, ( L,A 0 , x ) and

 L,A 0 , m ) ( Fig. 5 ), seemingly solve the inverse Mie problem. Cor-

esponding projections for other amplitudes ( A p and A p / A 0 ) are

hown in Fig. A2 . 

The major remaining problem is that Fig. 5 does not define a

ingle-valued function over the whole domain of ( L,A 0 ). In partic-

lar, the larger- A 0 side of both x and m surfaces contain multi-

le branches and large derivatives, resulting in fragmentation into

eemingly isolated dots. This problem is especially pronounced for

 , making its determination impossible in this region. To gain

ore understanding of this issue let us take a more detailed look

t Fig. 4 (b). Slicing it at constant size ( x = 24) we obtain a typical

ependence of A 0 on m ( Fig. 6 ), featuring monotonous increase for

maller m , but complex oscillation for m > 1.2. The latter oscilla-

ions also significantly depend on a particular value of x , as typical

or the Mie theory. 

Naturally one can only hope to invert the map G in a lim-

ted domain of uniqueness, but defining this domain is not trivial.

et us first discuss it using 1D case of Fig. 6 as an example. The

rst option is a domain of m , in which A 0 ( m ) is a monotonous

unction – from the origin to the first maximum, see Fig. 6 (a).
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Fig. 4. The dependence of L (a) and A 0 (b) for spheres on x and m . 

Fig. 5. Scatter plot of x (a) and m (b) versus L and A 0 , based on the same theoretical data as Fig. 4 . Axes directions differ between the figure parts for clarity. 
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color in this figure legend, the reader is referred to the web version of this article.) 
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This corresponds to a standard branch of a multi-valued inverse

function (e.g., in complex analysis) and we further denote it as a

prior uniqueness domain. Inconveniently, it is based on assump-

tion about values of m , which is hard to verify for real particles

in some applications. An alternative option is to define a signal-

based uniqueness domain using only the function values (experi-

mental signals). Fortunately, as shown in Fig. 6 (b), there exists a

threshold such that for smaller A 0 the inverse problem is guaran-

teed to have a unique solution. There is, however, a trend of de-

creasing A 0 down to zero for larger m (data not shown, but see

Fig. 8 ), which makes it impractical to build signal-based unique-

ness domain using the whole set of m > 1. Thus, we still need to

employ prior assumption about m , but it can be varied to fit any

specific application in contrast to the prior uniqueness domain.

In particular, here and further we implicitly limit m to the range

[1,1.5] as specified earlier. Analogous plots for A p ( m ) and A p / A 0 ( m )

are shown in Fig. A3 . 

If one rotates Fig. 6 by 90 ° and considers it as a plot of inverse

function m ( A 0 ), the definition of the uniqueness domains could be

restated as regions from the origin to the infinite derivative of the

main branch m ( A 0 ) and to the first occurrence of multiple values,

respectively. In this form those definitions can be directly gener-

alized to the two-dimensional map G , replacing m ( A 0 ) by x ( L,A 0 )

and m ( L,A 0 ). However, rigorous calculation of such uniqueness do-

mains is arduous; hence, we employ an approximate shortcut, as-

suming that x and L are linearly related. Then we need to con-

sider only m ( L,A 0 ) – its infinite derivatives correspond to that of

m ( A 0 ) for a specific x [ Fig. 6 (a)] and its multiple values appear if

and only if A 0 ( m ) is outside of the signal-based uniqueness domain

[ Fig. 6 (b)]. Therefore, the whole uniqueness domain (of each type)

in coordinates ( x,m ) can be obtained by combining correspond-

ing ranges of m , obtained for each x separately. As further results

show, e.g., Fig. 9 , this approximate method does not introduce any

artefacts. 

The resulting uniqueness domains are shown in Fig. 7 (a), fea-

turing characteristic Mie oscillations. The boundaries of x are de-

termined by the original choice of the grid. However, the lower

boundary cannot be significantly lowered due to low contrast of

spectral peak ( Fig. 3 ); note also the dip in the prior uniqueness

domain for x ≈ 12. By contrast, the upper boundary of x can be ex-

tended, minding the moderate decrease of maximum operational

value of m and required fine angular resolution of the measured

LSPs. The uniqueness domain can also be presented in terms of L

and A 0 [ Fig. 7 (b)], which facilitates better understanding of differ-

ences between the two domains. The prior uniqueness domain is

initially defined in terms of x and m , and corresponding particles
re guaranteed to fall within the prior ( L,A 0 ) domain, but not vice

ersa. In other words, the latter domain plays a secondary role,

nd can only be used for additional consistency check. By contrast,

he signal-based domain is originally defined in terms of L and A 0 ,

ut has one-to-one correspondence with the ( x,m ) domain. So any

article with the signal inside the ( L,A 0 ) domain can be uniquely

haracterized, and any particle with characteristics inside the ( x,m )

omain is guaranteed to have suitable values of L and A 0 . Analo-

ous results for other amplitudes are shown in Fig. A4 . 

An unexpected feature of Fig. 7 is large similarity of two

niqueness domains for larger x . That is related to the behavior

f A 0 ( m ) for such x , a specific example of which (for x = 90) is

hown in Fig. 8 . First, it illustrates the abovementioned decreas-

ng trend with increasing m . Second, the general increasing trend

n a wide range of m (up to 1.5) is interrupted by almost flat

shoulder” around m = 1.1. Following our definition, this shoulder

ontaining minor oscillations determines the upper m -boundary of

oth uniqueness domains. However, ignoring the shoulder will ex-

end the upper boundary of m to a value from 1.2 to 1.4 (see Fig.

 ) and will introduce only relatively small errors, comparable to

xperimental uncertainties in determination of L and A 0 . But we

eave this option for future research. 

.3. Interpolation of the inverse map 

Given the point-wise representation of the inverse map ( Fig.

 ), limited to the uniqueness domain ( Fig. 7 ), the only remaining

tep is to make it operational (easy to compute) for any input pair

 L,A 0 ). For that we employ interpolation, carried out in two steps.

irst, we apply triangular linear interpolation to project the original

rregular set of points onto the regular grid. Second, we construct

ilinear interpolant based on the latter grid. 

Additionally, to reduce interpolation errors we preliminary

traighten the surfaces of x ( L,A 0 ) and m ( L,A 0 ) as described in the

ollowing. By its definition [Eq. (4)] A 0 is the squared average

alue of the windowed LSP. In the framework of the Rayleigh-

ans-Debye approximation [47] this average value is proportional

o x 2 ( m – 1) 2 , implying 

 0 ∼ x 4 ( m − 1 ) 
4 ⇒ x ( m − 1 ) ∼ 4 

√ 

A 0 . (6)

ombining it with approximately linear relation between x and L ,

e define the linearized zero-frequency amplitude as 

 0 = 

4 
√ 

A 0 /L (7)

ith the goal for m − 1 to be approximately proportional to B 0 .

herefore, we use B instead of A for further processing. In par-
0 0 
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of the function graph to be inverted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Same as Fig. 5 , but using the linearized amplitude B 0 instead of A 0 and limited to the signal-based uniqueness domain. 
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L  
icular, the scatter plots of x ( L,B 0 ) and m ( L,B 0 ) are shown in Fig.

 . 

Note that the inherent approximations in the above analysis in-

roduce no errors, since in the end the interpolation does account

or any deviations, given sufficiently dense grid. This interpolation

ogether with the intermediate regular grid is shown in Fig. 10 . The

rocedure for other amplitudes is completely analogous, using the

ollowing linearization: 

 p = 

4 
√ 

A p /L , B p / B 0 = 

4 
√ 

A p / A 0 . (8) 

he corresponding interpolants are depicted in Fig. A5 . 

Finally, one can see that functions x ( L,B 0 ) and m ( L,B 0 ) are al-

ost linear in the shown domain, suggesting a simple approximate

xpression. Indeed, the following regression relations can be de-

uced from our data: 

 ≈ 3 . 20 L, (9)

 ≈ 1 + 0 . 0 6 6 B 0 ≈ 1 + 0 . 135 B p . (10)
hey are constructed inside the signal-based uniqueness domains,

nd only the main influential spectral parameter is left for each

article characteristic, since the dependence on the second param-

ter is minor but strongly non-linear. Overall, Eqs. (9) and ( 10 ) can

e considered as extension of the simplest spectral sizing method

43] . However, the detailed analysis (including errors) of these ap-

roximations lies beyond the scope of this paper, since our main

oal is the rigorous inversion of the underlying 2D map. 

To conclude this section, we note that the particular con-

tructed characterization method, including the above analysis, and

ts performance, discussed further, depend on specific definition of

he LSP and its spectrum. Thus, it is not directly applicable to other

pplications, but the general approach can be easily repeated to

uild the characterization method anew. 

. Experimental procedures and test data 

The experimental verification of the developed spectral charac-

erization method is based on the SFC, which reliably measures

SPs of single particles for the wavelength of 660 nm in the an-
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Fig. 10. Same as Fig. 9 , but after the interpolation using the intermediate regular grid. Color denotes the height (the value of the z coordinate). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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gular range from 10 ° to 65 ° Details of the SFC are described else-

where [11,15] . We chose two relevant biological objects, which has

close-to-spherical shape and (partly) fall into the uniqueness do-

main discussed above, namely milk fat globules and spherized red

blood cells (RBCs). For both samples the absorption (imaginary part

of the refractive index) at the used wavelength can be neglected. 

LSP measurements for milk sample had been performed pre-

viously [49] . Briefly, whole (not normalized) milk was obtained

from a local farmer. The sample was warmed to approximately

20 °C prior to measurement and diluted 50,0 0 0 times with distilled

water [49] . The range of sizes for those milk fat globules is 0.5–

6 μ m, refractive index n is 1.44–1.52. The medium is water with

n 0 = 1.331, leading to the range of relative refractive index m 1.08–

1.14. And the range of x is then 3–38, which partly falls into the

signal-based uniqueness domain [ Fig. 7 (a)]. 

Red blood cells were studied using the protocol described in

[50] . After informed consent a blood sample was taken from a

donor by venopuncture and collected in a vacuum tube containing

anticoagulant. The blood was placed into lysing solution of am-

monium chloride to spherize RBCs. In this case the medium re-

fractive index is n 0 = 1.331. The range of x and m are [35,48] and

[1.022, 1.048], respectively, which is completely inside the opera-

tional (signal-based uniqueness) domain of the method [ Fig. 7 (a)]. 

Both sets of data measured by the SFC were first processed by

least-square global optimization, using the Mie theory as described

in [49] , and are further denoted as “LSP fit” . Thus we obtained

best-fit values and uncertainties of d and n for each particle. Those

were further used as a reference to evaluate the performance of

the developed spectral method. 

Finally, to estimate the sensitivity of the developed method to

deviations from the spherical shape we used synthetic data for

spheroids, as described in [51] . For that we used a database of

LSPs, originally used for milk fat globules [49] , and cut it to fall

completely within the signal-based uniqueness domain. The result-

ing ranges are: volume-equivalent diameter d v ∈ [1.6,6] μm, aspect

ratio ε ∈ [1,1.41], n ∈ [1.44, 1.48] (with n 0 = 1.343), and complete

range of orientation with respect to the incident beam – [0 °,90 °].
Those synthetic LSPs were calculated with the T-matrix method

[52] . 
. Results and discussion 

.1. Milk fat globules 

When turning to experimental signals corresponding uncertain-

ies come into play. While uniform white noise has almost no in-

uence on the LSP spectrum and, hence, on the inverse algorithm

data not shown), there are other less trivial distortions of the ideal

ignal of a sphere. See, for instance, a typical LSP of milk fat glob-

le in Fig. 11 (a), shown together with a best-fit theoretical LSP.

he low-frequency difference between them (residual) is similar

o spatial blur (running average) and has a pronounced effect on

he LSP spectrum. In particular, it has almost no effect on L and

 0 , but significantly decreases A p . It is mostly due to the devia-

ion of the real particle shape from a spherical one, which is ex-

ected both for milk fat globules and spherized RBCs. Another fac-

or is the instrumental distortions of the SFC, which are quanti-

atively similar, but are at least two times smaller in magnitude,

s assessed from measurement of 4 μm polystyrene particles as-

umed to be ideal spheres (data not shown). We do not analyze

he latter spheres further, since they fall outside of both unique-

ess domains of the characterization method. Note that in the fol-

owing we show the real characteristics of the measured particles

 d and n ) in contrast to dimensionless ones ( x and m ) used in

ection 2 . 

Also shown in Fig. 11 is the LSP calculated from the character-

stics obtained from the processing of ( L,A 0 ). Naturally, the power

pectrum of this LSP agrees with the experiment and the LSP (Mie)

t in those two parameters. However, the close agreement be-

ween the spectral method and the LSP fit as a whole, spanning

rom agreement of obtained characteristics [ Fig. 11 (a)] is somewhat

urprising. Note that the simplest least-square fit is a minimiza-

ion of one specific error norm, which does not exactly correspond

o the complex structure of residual. Still, the two different meth-

ds give very close values, which adds confidence to application of

oth of them. 

One can also see from Fig. 11 (b) that both other spectral am-

litudes ( A p and A p / A 0 ) are much more sensitive to model errors.

his is illustrated in Fig. A6 , showing larger differences in both the
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Fig. 11. Windowed LSP (a) and its power spectrum (b) for a milk fat globule, depicting experimental and two theoretical LSPs. The latter correspond to sphere characteristics 

obtained with least-square LSP fit and the developed inversion method based on spectral parameters ( L,A 0 ). The obtained values of characteristics are given in the legend. 

For the LSP fit we also show the error estimates ( ±) of this characteristics corresponding to 1 standard deviation. 

Fig. 12. Scatter plot of characterization of milk fat globules using the spectral 

method based on ( L,A 0 ) and the least-squares LSP fit (5181 particles). Also shown 

are mean and ( ±) standard deviations for particle characteristics over the whole 

sample. Histograms on the top and bottom sides correspond to distributions over 

individual characteristics; striped and red-filled bins correspond to the spectral 

method and the LSP fit, respectively. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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SP and its power spectrum, resulting in systematic errors in the

btained characteristics (mostly n ). Therefore, for all considered ex-

erimental targets (see also Section 4.2 ) the amplitude A 0 is clearly

ore robust with respect to distortions and leads to more accurate

etrievals. That is why we treat is as the main spectral amplitude,

eaving the other two for Appendix A . 

Let us turn to the processing of the whole sample, shown in

ig. 12 . We have employed the characterization approach based

n signal-based uniqueness domain, thus part of the sample with

maller and larger sizes (about 53%) is discarded in all results. In

otal 5181 particles were processed. The agreement between the

roposed method and the standard LSP fit is very good, both in

erms of the complete distribution and its integral parameters. We

lso tried characterization methods, based on two other spectral

mplitudes, showing the results in Fig. A7 . However, the results
re definitely worse due to systematic shift in n in accordance

o single-particle results discussed above. Moreover, a smaller

umber of particles fall into the uniqueness domains for those

pectral amplitudes. Therefore, the parameters of the distributions

ver the whole sample (shown in the legends) cannot be compared

irectly. 

The advantage of a more complicated LSP fit is that it addi-

ionally provides an error estimate for each characteristic, which

an be considered as the best accuracy possible for a given exper-

mental measurement. We have used those estimates for a more

etailed single-particle comparison of the methods. As shown in

ig. 13 , there is a correlation between the difference of two meth-

ds and the LSP-fit uncertainties. Moreover, the data is approxi-

ately symmetric with respect to the unity-slope line, suggest-

ng that the accuracy of the spectral method is generally com-

arable to that of the LSP fit. Moreover, the largest deviations

rom the unity-slope line mostly appear for small differences, i.e.

here both methods are good enough for most practical pur-

oses. While without knowing the real characteristics of the mea-

ured particles we cannot directly assess the accuracy of the spec-

ral method, we can claim that this error is smaller than the

ifference from the LSP fit plus the uncertainty of the latter.

hus, Fig. 13 shows that for many particles the spectral method

s capable of accuracy better than 100 nm and 0.01 in d and n ,

espectively. 

.2. Spherized red blood cells 

The processing of the spherized red blood cells is done com-

letely analogous to the milk fat globules ( Section 4.1 ). In total

483 particles were processed, all of them satisfy the signal-based

niqueness bound. The results are shown in Figs. 14 and 15 . As

n the case of milk the characteristics obtained by the spectral

ethod are very close to that of the LSP fit, and the differences

etween the two methods are comparable to the estimated un-

ertainties. However, for particles with the largest uncertainties

the least spherical shape) the differences are several times smaller

han the uncertainties ( Fig. 15 ). This does not imply that the spec-

ral method is more accurate. Instead, it only shows that the spec-

ral method treats shape distortions similarly to the LSP fit (see Fig.

1 ). Nevertheless, these results do support the conclusion that the

ccuracy of the spectral method is at least comparable to that of

he LSP fit. The results for characterization method based on A p are
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Fig. 13. Scatter plot of difference between the characteristics, d (a) or n (b), obtained by the LSP fit and the spectral method versus the uncertainty (error estimate) of the 

LSP fit itself in log-log scale. The straight line with the slope 1 is shown for illustration purposes. The underlying data is the same as in Fig. 12 . 

Fig. 14. Same as Fig. 12 but for the spherized red blood cells (4483 particles). 
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shown in Fig. A8 ; they are much less accurate. Using A p/ A 0 is not

feasible at all for this experiment, since the distortions (systematic
Fig. 15. Same as Fig. 13 but for the spherized red blood 
ecrease) of this parameter shift it outside of both uniqueness do-

ains [Fig. A4 (d)] for most of the measured particles. 

.3. Simulated spheroids 

Simulated data allow us to probe the effect of shape distor-

ions more quantitatively. We processed the 1123 synthetic LSPs

nd plot the resulting error of determined characteristics versus

he aspect ratio ε ( Fig. 16 ). For assessment of size values we chose

rather arbitrarily) the volume-equivalent diameter as a reference,

ut that does not affect the following conclusions. First, the pro-

osed characterization method is continuous (stable) with respect

o the shape distortion, i.e. the closer the particle is to a sphere

the smaller are the errors. Even for ε = 1.4 the obtained charac-

eristics are qualitatively correct, although the errors of n are large.

econd, we can set a convenient threshold ε = 1.1, below which the

rrors can be claimed small – mostly below 5% (relative) and 0.01

or d v and n , respectively. The results for characterization meth-

ds, based on two other spectral amplitudes, are shown in Fig. A9 .

hile the results of both other characterization methods are also

ontinuous with ε, they are definitely less accurate, directly sup-

orting the hypothesis of their larger sensitivity to shape distor-

ions. 
cells. The underlying data is the same as in Fig. 14 . 
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Fig. 16. Characterization of synthetic spheroids (1123 particles) with the spectral method based on ( L,A 0 ), showing scatter plot of relative error of d v (a) and absolute error 

of n (b) versus the spheroid aspect ratio ε. 
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. Conclusion 

We developed a fast method to determine size and refractive

ndex of homogeneous spheres from the power Fourier spectrum

f their LSPs. To make the algorithm as simple and robust as pos-

ible we explicitly limited ourselves to using only two spectral

arameters – the location of the non-zero peak (the main angu-

ar frequency) L and zero-frequency amplitude A 0 . The method is

ased on the interpolation of the inverse of the map from the

pace of the particle characteristics x and m to the space of spectral

arameters L and A 0 ; hence, it works only inside the uniqueness

omain of this map. Two approaches were tested for construction

f this domain: based on prior assumptions about ranges of x and

 , and using only the measured parameters L and A 0 . The spec-

ral peak cannot be reliably resolved for x < 11, while the larger

imit of x was arbitrarily set to 100. For smaller x the prior and

ignal-based uniqueness range of m is from 1 to 1.15 and 1.25, re-

pectively, and for larger x the upper bound of m oscillates with

ecreasing trend towards 1.1. 

The developed method was tested on two experimental sam-

les, milk fat globules and spherized red blood cells, and resulted

n accuracy not worse than the reference method based on the

east-square fit of the LSP with the Mie theory. Moreover, for par-

icles with significant deviation from the spherical shape the spec-

ral method was much closer to the Mie-fit result than the esti-

ated uncertainty of the latter. We also tested the spectral method

n synthetic LSPs of spheroids with ε up to 1.4. The results are

ualitatively correct for all cases; however, the good accuracy (rel-

tive errors of d v and absolute error of n less than 5% and 0.01,

espectively) was systematically obtained only for ε < 1.1. 

The major advantage of the method is its speed – about 1 ms

er LSP on a desktop computer, which is at least 3 orders of mag-

itude faster than the direct fit of the LSP. This allows novel appli-

ations, e.g., using it inside other iterative optimization algorithms,

ut comes at a cost of its limited range of applicability in terms of

article characteristics. Moreover, the method gives no indication

f data quality or uncertainties of the estimated characteristics,
hich can be alleviated only by considering additional parameters

f either LSP or its spectrum. The robustness of the method with

espect to shape and even instrumental distortions is related to

he fortunate choice of A 0 as a second spectral parameter. Methods

ased on other two tested parameters, absolute and relative ampli-

udes of the non-zero spectral peak, performed fine on ideal data

ut led to large systematic shifts in the presence of even minor

hape distortions. Hence, they were largely inferior to the method

ased on A 0 in all test cases. 

Importantly, we not only constructed a characterization method

or a specific experimental configuration, but also provided all rel-

vant details and discussed several potential issues for its applica-

ion. Therefore, it is straightforward to repeat the whole procedure

or any other experimental set-up resulting in a different expres-

ion of the LSP. 
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ppendix A. Employing other spectral amplitudes 

Here we list the results of using two other spectral amplitudes,

 p and A p / A 0 , in combination with L for characterization of vari-

us particles. This results complement the results for ( L,A 0 ) in the

ain text of the paper, and are briefly discussed there. The pur-

ose of this Appendix is mainly to illustrate other options and the

ealth of the Mie theory in general. Unfortunately, these options

re much more sensitive to the particle shape distortions (see, e.g.,

igs. A6 and A9 ), making them clearly inferior to characterization

ased on ( L,A 0 ) in most experimental settings. 

http://dx.doi.org/10.13039/501100006769
http://dx.doi.org/10.13039/501100002261
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Fig. A1. Same as Fig. 4 (b), but for A p (a) and A p / A 0 (b). 

Fig. A2. Same as Fig. 5 , but using A p (a,b) and A p / A 0 (c,d) as a second spectral parameter. It is based on the same data as Fig. 4 (a) and Fig. A1 . Axes directions vary among 

the figure parts for clarity. 
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this article.) 
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Fig. A4. Same as Fig. 7 , but using A p (a,b) and A p / A 0 (c,d) as a second spectral parameter. In part (d) top boundaries for both uniqueness domains coincide, analogously to 

the bottom boundaries in other parts and Fig. 7 . 
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Fig. A5. Same as Fig. 10 , but using B p (a,b) and B p / B 0 (c,d) as a second spectral parameter. The operational domains correspond to the signal-based uniqueness domains, 

depicted in Fig. A4 . 

Fig. A6. Same as Fig. 11 but using A p and A p / A 0 as a second spectral parameter. 
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Fig. A7. Same as Fig. 12 but without histograms and using A p (a) and A p / A 0 (b) as a second spectral parameter. We employed the prior uniqueness domain in (b), since 

almost all data fall outside of the signal-based one [ Fig. A4 (d)] due to the reduced values of A p / A 0 in the experiment. The number of processed particles, i.e. falling into the 

corresponding uniqueness domains, is 5485 and 2897 for (a) and (b), respectively. 

Fig. A8. Same as Fig. 14 but using A p (a) and A p / A 0 (b) as a second spectral parameter. Analogously to Fig. A7 (b) we employed the prior uniqueness domain in part (b). The 

number of processed particles, i.e. falling into the corresponding uniqueness domains, is 4483 and 4271 for (a) and (b), respectively. 
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Fig. A9. Same as Fig. 16 but using A p (a,b) and A p / A 0 (c,d) as a second spectral parameter. Analogously to Fig. A7 (b) we employed the prior uniqueness domain in parts (c,d). 

The number of processed particles, i.e. falling into the corresponding uniqueness domains, is 961 and 197 for (a,b) and (c,d), respectively. 
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