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Abstract 

Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to 

study conformations and aggregation of peptides, proteins, nucleic acids, and other 

macromolecules. For a pair of spin labels, experimental data allows for determination of their 

distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral 

equation, which is an ill-posed problem. Here, we suggest regularization by the increasing of 

distance discretization length, to its upper limit where numerical integration still provides 

agreement with experiment. This upper limit is found to be well above the lower limit for which 

the solution instability appears because of the ill-posed nature of the problem; so the solution 

indeed can be regularized in this way. For solving the integral equation, a Monte Carlo trials of 

P(r) functions is employed. It has an obvious advantage of the fulfillment of the non-negativity 

constrain for P(r). The approach is checked for model distance distributions and for experimental 

data taken from literature for doubly spin-labeled DNA and peptide antibiotics. For the case of 

overlapping broad and narrow distributions, “selective” regularization can be employed in which 
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the effective regularization length may be different for different distance ranges. The method 

could serve as a useful complement for the traditional approaches basing on Tikhonov 

regularization. 
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DNA 

 

 

Highlights 

 Regularization can be achieved by increasing the distance discretization length  

 The Monte Carlo search of solution converges satisfactorily fast  

 The method could serve as a useful complement to the traditional approaches  
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1. Introduction 

Pulsed double electron-electron resonance technique (DEER, also known as PELDOR) 

[1,2] allows measurement of distances between paramagnetic centers ranging between 1.5 and 8 

nm. Distance distributions obtained from PELDOR data provide access to conformational 

flexibility of biomolecules (peptides, proteins, nucleic acids). Some recent applications of the 

technique are summarized in reviews [3-10]. 

Most often, these studies are aimed on deriving information on the pair distance 

distribution function, P(r), between two spin labels attached to a biomolecule. From 

mathematical point of view, P(r) is obtained as a solution of a first-kind Fredholm integral 

equation, which is an ill-posed problem. Different approaches have been employed to solve this 

equation [11-19]; most of them use Tikhonov regularization to stabilize the solution. These 

approaches allow also determination of the total number of spins in the nanoobject under study 

(so not only pairs of spin labels can be investigated) and the distribution of the nanoobjects in 

space. The most commonly employed approach utilizes the DeerAnalysis2006 software [18].  

However, because of the ill-posed nature of the problem, solving of integral equation is 

prone for artifacts, especially when signal-to-noise ratio is not good [16,17]. Therefore 

development of alternative approaches is of general interest.  

Here, we present an approach in which regularization of the solution is attained by 

increasing the discretization length, up to the threshold where numerical calculation of the 

integral still provides an agreement with the experimental data. Near this threshold result of the 

numerical integration is expected to be sensitive to deviation of the solution, so it must be 

stabilized. As in this approach the number N of distance points ri in which P(ri) is sampled is not 

high, the integral equation can be solved by Monte Carlo trials for different distribution functions 

P(ri), with selection the function providing the best agreement with experimental data. In this 

approach, the constrain of non-negativity of P(ri) values is fulfilled automatically. (Note that 

maximum entropy regularization approach [17] also allows fulfillment of the non-negativity 
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constrain). First application of this approach was reported in [20], here it is developed and 

analyzed in detail. 

At first look, the number of Monte Carlo trials must be extremely large because it is 

searching minimum in N-dimensional space. However the contribution of different distances 

when solving the integral equation is essentially non-equivalent because of the singularity of 

kernel of the integral equation, and therefore the number of trials may be drastically reduced.  

We neglect here the possible complications arising in real PELDOR measurements such 

as the orientation selectivity [3-10], and the effects induced by overlapping of excitation and 

detection pulses [21]. These complications can be considered in the same way as in other 

approaches. 

 

2. Theoretical Background  

For doubly spin-labeled molecules, PELDOR time traces V(T) depend on two 

contributions: the intramolecular one, )(TVINTRA , arising from interactions between two labels in 

the molecule, and the intermolecular one, )(TVINTER , arising from interactions between labels in 

different molecules. These two contributions are assumed to be independent so that V(T) is a 

product: 

)()()( TVTVTV INTERINTRA .                                                (1) 

The VINTER(T) contribution can be obtained from experiments on mono-labeled molecules 

or it may be assessed from asymptotical V(T) behavior at large T so the VINTRA(T) contribution 

can be normally refined from experimental data.  

The theory [3-10, 21] predicts that 

))(1(1)(0()( TfVTV INTRAINTRA   , 

where factor   is determined by the parameters of the pumping pulse, and  
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where r is the distance between the two spin labels, g1 and g2 are the g-factors for spin 

labels 1 and 2, θ is the angle between the applied magnetic field and the vector connecting the 

labels. The distance distribution function P(r) between labels in the molecule is assumed to be 

normalized:  

1)(
0




drrP                                                           (3) 

(so making f(0) = 1 in Eq. (2)).  

Eq. (2) is a first-kind Fredholm integral equation over P(r). It could be solved if f(T) is 

known. The latter can be derived from the experimentally obtained )(TVINTRA
 after its 

transformation into a normalized form: 

)()0(

)()(
)(






INTRAINTRA

INTRAINTRA
N

VV

VTV
TV ,                                                (4) 

with the subsequent suggestion that )()( TfTVN  .  

Fourier transform of Eq. (2), denoted here as )(F , may be presented as  





0

)(),()( drrPrKF  ,                                                                 (5) 

where  
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)(F  is a frequency-domain PELDOR lineshape, which is called dipolar Pake (resonance 

pattern) spectrum. Note that from Eq. (3) it follows that )(F  is also normalized, 1)( 




 dF .  

Eq. (5) is also a first-kind Fredholm integral equation over P(r), with the ),( rK   as a 

kernel. To find P(r), Eqs. (2) and (5) both may be equally used. But for the approach employed 

here, Eq. (5) is preferable. First, from the experimentally-obtained Pake spectrum direct 

assessment is possible of the distance interval, from rmin to rmax, in which P(r) has significant 
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values. Second, the kernel (6) has a singularity at the frequency of 
3

2

21 1

2 r

gg B




   which can 

essentially accelerate the convergence of the Monte Carlo process. For nitroxides this frequency 

may be approximately presented as 
3nm)

MHz

/(

52

r
. Third, the artefacts appearing because of 

intervention of electron-nuclear envelope modulation (ESEEM) can be simply avoided, because 

they produce peaks at the known frequencies. 

 

3. Implementation 

The suggested approach consists of the following steps. 

(i) From the experimentally obtained F(ν) Pake spectrum, rmin and rmax distances are 

evaluated between which the P(r) function has significant values. It can be done from the 

relations 3MHznm
1

max(min)min(max) )/52(/ r , where max  is the high-frequency boundary of the 

Pake spectrum, and 
min  is taken slightly below the low-frequency maximum of the spectrum.  

(ii) The interval between rmin and rmax is divided into N subintervals, Δri. Here, we 

employed equal subintervals Δr = (rmax – rmin)/N (in principle, it is not necessary in a general 

case). So subintervals lie within the boundaries rirri  min , where i = 0, 1,…N.  

(iii) The trial distance distribution function, Ptrial(ri), is constructed in the way that 

Ptrial(ri) =0 for i = 0 and i = N; and that for other i numbers it is set to be a random ξi values 

distributed with equal probability between 0 and 1. Then, normalization in line with Eq. (3) is 

done using numerical integration employing the composite Simpson’s rule (N is assumed to be 

an even number).  

(iv) For the constructed )( itrial rP  function, the trial Pake spectrum Ftrial(ν) is calculated 

by numerical integration of Eq. (5). Integration is performed employing also the composite 

Simpson’s rule. It is done for a set of Jjj ,...2,1,  , values (J is normally between 20 and 40) 

lying within the Pake spectrum.  
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(v) The mean-squared deviations (MSD), 



J

j

j

J

j

jjtrialj CFFC
11

2 /))()( (MSD , 

between the calculated Ftrial(νj) and the experimental )( jF   values are determined, where jC  are 

the weighting factors. Different trials are compared and the distribution Ptrial(ri) providing the 

smallest MSD value is selected as a solution. Initially, weighting factors jC  are taken equal and 

then in some cases were selectively corrected depending on the obtained agreement between 

Ftrial(νj) and )( jF   in the particular j  values. (In most cases described below this correction 

was unnecessary).  

For broad distance distributions, when the distribution width is remarkably larger than 

Δr, the ξi values in step (iii) may be replaced by their modified i   values, obtained by a 3-point 

averaging of the adjacent values, 4/)2( 11   iiii  . This replacement means an effective 

increase of the distance discretization length (approximately by a factor of two); it may be 

employed selectively for different 1,...1  Ni  points. The necessity of this modification is 

determined empirically from agreement of simulated and experimental dipolar Pake spectra and 

the convergence rate of the Monte Carlo trials. The most appropriate N value is also assessed 

empirically.   

Calculations were done on standard PC using common Pascal software (the 

PascalABC.NET version). Normally, number M of the trials were between 10
7
 and 10

9
. For M = 

10
7
, calculations took typically 1 – 2 min. 

 

4. Results and Discussion 

4.1.  Two broad Gaussian distributions 

To illustrate how the algorithm works, the model distance distribution function consisting 

of two Gaussian lines of unequal amplitude, 
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was used, with the parameters a = 0.7, nmnm,nm 3.03,2 2121  RR .  

Results are presented in Fig. 1. The “experimental” f(t) PELDOR signal time trace (Fig. 

1a, it is given here only for illustrative purposes) and F(ν) Pake spectrum (Fig. 1b) were 

calculated using Eqs. (2) and (5), respectively. In the above algorithm of searching the best-fitted 

Ptrial(ri) the minimal 0min rr   value was set to 1.2 nm, the maximal maxr  rN value was set to 3.7 

nm; these boundaries correspond to the frequencies 
3nm)

MHz

/(

52

min(max)r
 shown by arrows in Fig. 1b. 

In these calculations, three-point averaging for random trials, 4/)2( 11   iiii  , (see 

above) was employed.  

 

Fig. 1. Results of implementation of the described algorithm to the bimodal Gaussian 

distance distribution (7), with a = 0.7, nmnm,nm 3.03,2 2121  RR . (a) Calculated 

PELDOR time traces: original data (blue solid line) and result of the fitting for N =16 (red 

circles). (b) The same for Pake spectrum; the arrows show the frequency positions corresponding 

to the largest and smallest distance with non-zero P(r) values in the fitting. (c) the P(ri) distance 

distribution functions (symbols), obtained for different N, compared with the original one (solid 

lines); data are shifted along the vertical axis for convenience; (d) logarithmic plot of MSD 

between the set of true F(νj) spectral intensities and those best-fitted, as a function of number of 

trials M, for different N indicated. Solid line shows that MSD (for N = 12 and N = 18) is 

approximately proportional to M
-0.25

.  
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The obtained best-fitted Ptrial(ri) distributions are given in Fig. 1c, along with the original 

function (7). One can see that for small N value, N = 10, the calculated P(ri) function does not 

describe well the original function (7): the left maximum is shifted and the right maximum is not 

resolved. This disagreement can be readily explained as a consequence of the crudeness of 

numerical integration in Eq. (5), because the integration step is too large. For N values between 

12 and 18 the calculated P(ri) are close to the original one. And for large N value (N = 20) the 

calculated P(ri) function starts to deviate; for N > 20 (data not shown) the deviation becomes 

remarkably larger. This deviation for large N can be attributed to the instability induced by the 

ill-posed nature of the integral equation (5), when different P(ri) solutions provide similar 

calculated F(ν) functions.  

The MSDs for calculated and original F(νj) functions obtained for frequency points used 

in calculations (j = 1, … 40) are given in Fig. 1d as a function of number M of trials. The point 

positions along the horizontal axis is determined by selection of the accidentally achieved 

minimal MSD values. One can see that for N = 12 and N = 18, solid line drawn in Fig. 1b shows 

that MSD is approximately proportional to M
-0.25

. MSDs for N = 10 are remarkably larger than 

those for larger N, which is an obvious consequence of the crudeness of integration mentioned 

above. This crudeness prevents good agreement with true Pake spectrum. So the convergence 

rate could serve as a marker of crudeness of integration.  

We conclude from these model calculations that, fortunately, there exists a rather large 

intermediate interval (N is varying between 12 and 18), in which the solution is stable and 

describes satisfactorily the experimental results. In practical applications, when distribution is 

unknown, N should also be varied to meet two criteria that calculated and experimental spectra 

satisfactorily coincide and that the solution remain stable.    

 

4.2.  Two narrow Gaussian distributions 
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The distribution function given by Eq. (7) was also used with the same parameters except 

for the twice smaller widths, nm15.021  . This is the case when two distances are well 

separated. Results of Monte Carlo fitting are shown in Fig. 2 for N = 28. It was found that 

algorithm does not work properly for small P(ri) values; so the P(ri) values were artificially set to 

zero for four ri distance points between the two maxima (see Fig. 2c). Note that such artificial 

assignment would not make problem in the case of real experiment, when distance distribution is 

unknown – because the presence of separated maxima in distance distribution could be readily 

seen from presence of separated peaks in the Pake spectrum. Also, to achieve better agreement 

with the original Pake spectrum, weighting coefficients Cj were enhanced in the vicinity of the 

spectral shoulders at ± 5 MHz. 

 

Fig. 2. The same as in Fig. 1, for   twice smaller and N = 28. Solid line in (d) shows that MSD 

is proportional to M
-0.23

. See text for other details.  
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distances larger than 1.5 nm, so this model P(r) function was set to zero at distances r < 1.5 nm 

and multiplied correspondingly by a factor of 1.018 to match the normalization given by Eq. (3).  

In this case, it would be reasonable if the distance discretization is different for the 

narrow and broad distance distributions. This goal could be achieved in different ways: simply 

by varying Δri with i number or by the 3-point averaging of the adjacent points, employed only 

for the distances outside the narrow distribution. As it was mentioned above, this averaging 

corresponds to effective increase of the discretization length Δri. Here, we employed the latter 

approach. It was found that for better agreement of original and calculated Pake spectra, this 

averaging should be done twice.  

The results are shown in Fig. 3. Note that position of the narrow distribution at 3 nm can 

be simply evaluated a priori from the shoulder at the Pake spectrum at ± 1.9 MHz (see Fig. 3b). 

In Figs. 3a, 3b and 3c one can see a reasonable agreement of calculated results with the true data. 

Note that the rate of convergence given by data in Fig. 3d is noticeably slower (MSD is 

proportional to M
-0.09

)
 
than in the two previous cases. This may be explained by a crudeness of 

the integration step Δr for the narrow distance distribution, like it was suggested above in the 

subsection 4.1. (Certainly, the convergence can be further improved by using remarkably 

different Δr values for different distance ranges.) 
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Fig. 3. The same as in Fig. 1, for the set of parameters: nm3,2.0 1  Ra , 

nm1,nm15.0nm,5.3 212  R , and N =20. In (b), the arrow showing the frequency 

corresponding to the smallest distance with non-zero P(r) values (12.7 MHz) is beyond the scale 

of the plot; and the inclined gray arrow indicates the shoulder corresponding to the narrow 

distance distribution. Solid line in (d) shows that MSD is proportional to M
-0.09

. See text for other 

details. 

 

 The approach used here when for different distance ranges different regularization 

lengths are used may be called as selective regularization. The possibility of such selectivity may 

be considered as an obvious advantage of the technique as compared with those using Tikhonov 

regularization.   

 

4.4.  Doubly spin-labelled 13-mer of DNA  

In [22], PELDOR experiments were done on the doubly spin-labeled 13-mer of DNA 

duplex:  

 

5' TpCpTpCpTpCpGpCpCpTpTpCpC 3' 

3' R-ApGpApGpApGpCpGpGpApApGpG-R 5', 

 

where R denotes the nitroxide spin label. In these studies, deuterated water/glycerol mixture (1:1 

v/v) was used as a solvent. 

In Fig. 4, the original VN(T) time trace obtained from data [22] is given along with its 

Fourier transform and results of implementation of the described Monte Carlo algorithm. It was 

found that the peculiarities seen in the central part of the spectrum (see Fig. 4b) can be described 

only if a small admixture of P(r) at long distances is added. We used here a model P(r) function 
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linearly diminishing with r increasing above 6.5 nm (see Fig. 4c). Probably this admixture in 

experiments [22] is induced by presence of a small amount of single-stranded DNAs. 

In Fig. 4c, results of calculations [22] obtained using common approach based on 

Tikhonov regularization also are presented. One can see that the approach used here provides 

very similar information.  

 

Fig. 4. Results of implementation of the described algorithm for PELDOR data obtained 

in [22] for doubly spin-labeled DNA in frozen deuterated water/glycerol mixture. The meanings 

of the presented data are the same as in Fig. 1. In (c), the fitted distance distribution function (red 

circles) is compared with that found in [22] where it was obtained with Tikhonov regularization 

(solid blue line). Solid line in (d) shows that MSD is proportional to M
-0.16

. See text for other 

details. 

 

4.5.  Peptide antibiotic ampullosporin A  

Doubly spin-labeled peptide antibiotic ampullosporin A having the amino acid sequence 

 

            Ac-Trp-Ala-R-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Gln-Leu-R-Gln-Lol, 
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was studied in [20]. Here, R is a spin-labeled amino-acid. In [20], the obtained experimental 

PELDOR data were treated by the preliminary version of the algorithm suggested here. Here we 

treat these data in more detail (Δr here is much smaller than that used in [20]).  

  

Fig. 5. Results of implementation of the described algorithm for PELDOR data obtained in [20] 

for doubly spin-labeled ampullosporin A in frozen methanol solution. The meanings of the 

presented data are the same as in Fig. 1. Solid blue line in (c) presents result of calculations taken 

from literature [23], which were obtained using Tikhonov regularization for the same system. 

Solid line in (d) shows that MSD is proportional to M
-0.27

. 

 

Fig. 5 presents original PELDOR VN(T) data for spin-labeled ampullosporin A in frozen 

methanol solution, its Fourier transform – the Pake resonance spectrum, results of 

implementation of the described Monte Carlo algorithm, along with the results [23] in which 

common approach based on the Tikhonov regularization algorithm was employed perfectly for 

the same system. From the results shown in Fig. 5c, one can see that the approach employing 
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Tikhonov regularization [23] and the suggested Monte Carlo approach provide very similar 

results.  

 

5. Conclusions 

It is shown that solution of integral equation for deriving distance distribution from the 

experimental PELDOR data can be stabilized by increasing the distance discretization length Δr. 

The solution is stabilized because numerical integration at large Δr strongly depends on the 

smoothness of the function under integral. From the other side, Δr must be not so large that 

integration becomes inaccurate. Fortunately, the intermediate region exists in which the Δr is not 

so small that the instability appears and Δr is not so large that integration remains reasonably 

accurate. For most commonly occurring experimental situations, the number of discretization 

intervals between 10 and 20 – 30 (depending on the shape of distance distribution) serves well to 

meet these opposite requirements.  

Solving the integral equation may be performed using Monte Carlo trials of the distance 

distribution function. This approach allows to fulfill automatically the constrain of non-

negativity of P(ri). As the number of discretization intervals is not high and the kernel of integral 

equation possesses a singularity, the Monte Carlo process converges reasonably rapidly. In the 

case of admixing of low-intensity distance distributions, the P(ri) values for these admixtures 

should be replaced by an appropriate model function.  

In the case of overlapping of narrow and broad lines, it is shown here that a selective 

distance discretization is helpful when for different distance ranges different regularization 

lengths are used. The possibility of such selectivity may be considered as an advantage, as 

compared with the techniques using Tikhonov regularization. In simple cases, the obtained 

results of determination of distance distribution from experimental PELDOR data on spin-

labeled biomolecules show good agreement with those obtained by traditional Tikhonov 
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regularization approach. So the suggested approach could serve as a useful complement to the 

traditional methods.  
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