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Abstract: Pulsed double electron–electron resonance technique (PELDOR 
or DEER) is often applied to study conformations and aggregation of spin-
labelled macromolecules. Because of the ill-posed nature of the integral 
equation determining the distance distribution function, a regularization pro-
cedure is required to restrict the smoothness of the solution. In this work, we 
performed PELDOR measurements for new flexible nitroxide biradicals based 
on trolox, which is the synthetic analogue of α-tocopherol; spin-labelled trolox 
derivatives are investigated as potential anti-cancer drugs. We use regulari-
zation by an approximation of the solution with a sum of limited number of 
Gaussians, by varying their positions, widths and amplitudes. Their best-fitted 
values were found by a completely random Monte Carlo process. The use of the 
frequency-domain PELDOR data allowed diminution of the artifacts induced 
by spin–spin electron–nuclear and intermolecular electron–electron interac-
tions. It was found that for the all biradicals studied, the use of three Gaussians 
was enough for good agreement with the experiments. The number of trials 
for obtaining satisfactory result was found to be quite reasonable, which is 
explained by presence of the singularity in the core of integral equation. The 
maxima of inter-spin distance distribution for different biradicals were found 
to vary between 1.5 and 2.3 nm, depending on the linkers between the Trolox 
core and nitroxides. The distance distributions around these positions reflect 
flexibility of the biradicals.
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1  Introduction
Pulsed double electron–electron resonance technique (DEER, also known as 
PELDOR) [1, 2] allows measurement of the distance distribution function, P(r), for 
distances between two paramagnetic centers. For doubly spin-labelled molecules 
(biradicals), PELDOR data provides information on their conformational flexibil-
ity. Some recent applications of the technique are summarized in reviews [3–10].

The P(r) function can be obtained in the range between 1.5 and 8 nm, as a 
solution of a first-kind Fredholm integral equation [11–20]. Solving of this equa-
tion, however, is an ill-posed problem: slight variation of the input experimen-
tal data may result in a large variation of the solution. Therefore, some a priori 
properties of the solution must be postulated, which is called regularization of 
the solution; the most commonly employed approach is the Tikhonov regulariza-
tion. However, in some cases the existing approaches may produce artifacts – e.g. 
when narrow and broad distributions are superimposed [16, 17]. Regularization 
can also be done in other ways – by approximation of the solution as a sum of 
several Gaussian distributions (multi-Gaussian fit) [21–23], or by increasing the 
discretization length up to the threshold where numerical calculation of the inte-
gral still provides agreement with the experimental data [24, 25].

In this work, we show that a multi-Gaussian fit [21–23] can be satisfactorily 
applied to study flexible synthetic biradicals. We use here exclusively a random 
Monte Carlo procedure for searching for the best-fitted solution, without the 
downhill simplex procedure employed in [21–23], so making the searching scheme 
extremely simple and easily programmable. Also, because the consequent trials 
are uncorrelated, trapping in the local minima is automatically avoided. Another 
point of the approach employed here is the use of the frequency-domain experi-
mental PELDOR data, which allows evaluation of the initial fitting parameters 
and diminishes the artifacts induced by spin–spin electron–nuclear and inter-
molecular electron–electron interactions.

At first glance, the number of Monte Carlo trials must be extremely large, 
because for N Gaussians 3N independent parameters must be found – their posi-
tions, widths, and amplitudes (3N – 1 after normalization). However, the contri-
bution of different distances when solving the integral equation is essentially 
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Multi-Gaussian Monte Carlo Analysis of PELDOR Data      3

non-equivalent because of the singularity of the kernel of the frequency-domain 
integral equation. Therefore the number of trials may be reasonable.

The biradicals under study are based on Trolox – the synthetic analogue of  
α-tocopherol (see the scheme below). α-Tocopherol has many important functions; 
in particular it serves as a universal protector of cell membranes from oxidative 
damage. Therefore, its derivatives may also have physiological activity. Spin-
labelled Trolox derivatives are nowadays investigated as potential anti-cancer 
drugs [26]. These studies are focused on the possible ability of nitroxide-contain-
ing Trolox derivatives to protect bacterial cells from spontaneous and peroxide-
induced mutagenesis and on their cytotoxicity against different tumors [26].
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where R is a spin label, and x (= 0 or 1) and y (= 0 or 1) indicate the presence of 
additional inserts. The substances studied in this work are listed in Table 1. For 
convenience, all the substances are grouped by the type of spin label (indicated 
by a Roman number). The presence of additional inserts is marked as two Arabic 
numbers.

Tab. 1: Structures of biradicals studied in this work.
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4      A.G. Matveeva et al.

Some of the studied compounds (I-10 and I-01) were synthesized in [27]; 
others were originally synthesized. Note that I-10 and I-01 are salt hybrids, and 
the six others are covalently bonded true biradicals.

2  �PELDOR data analysis
PELDOR technique is based on electron spin echo (ESE) spectroscopy – a pulsed 
version of electron paramagnetic resonance (EPR); PELDOR signal is the ESE 
signal diminishing under application of an additional microwave pumping pulse, 
with a scanning delay T [1–10]. For doubly spin-labelled molecules, the PELDOR 
time trace depends on two contributions: the intramolecular one, arising from 
interactions between two spin labels in the molecule, and the intermolecular 
one, arising from interactions between labels in different molecules. These two 
contributions can be assumed to be independent so that the PELDOR time trace 
is presented as a product:

	 INTRA INTER( ) ( ) ( )V T V T V T= � (1)

VINTER(T) often obeys a simple exponential dependence,

	 INTER 0( ) exp( const )V T V T= − ∗ � (2)

For VINTRA(T), a normalized form,

	
INTRA INTRA

INTRA INTRA

( ) ( )
( ) ,

(0) ( )N

V T V
V T

V V
− ∞

=
− ∞ �

(3)

is obtained. It is assumed here that VINTRA(T) attains a constant value VINTRA(∞) 
at large T. Note that ratio (VINTRA(0) –VINTRA(∞))/VINTRA(0) is the efficiency of the 
pumping pulse action, the dimensionless value pB [2, 10].

The theory [2–10] predicts that cosine Fourier transform of Eq. (3), F(ν), may 
be presented as

	 0

( ) ( , ) ( ) ,F K r P r drν ν
∞

= ∫
�

(4)

where P(r) is the distance distribution function between the two spin labels in the 
molecule, which is assumed to be normalized, 

0
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Multi-Gaussian Monte Carlo Analysis of PELDOR Data      5

where A is a constant which for nitroxide spin labels is close to 52.4 MHz ∗ nm3. 
F(ν) is a frequency-domain PELDOR lineshape, which is called a dipolar Pake 

(resonance pattern) spectrum. Note that F(ν) is also normalized, ( ) 1.F dν ν
∞

−∞

=∫
In most applications, a PELDOR experiment is analysed in the time domain, 

for data presented by Eq. (3) [2–10]. However, the experimentally obtained Pake 
spectrum given by Eq. (4) is also eligible for the analysis [11, 13, 15]. The fre-
quency-domain data may have the advantages that [24, 25] (i) the direct assess-
ment is possible of the distance interval, from rmin to rmax, in which P(r) has 
significant values; (ii) artifacts appearing in ESE signal formation because of the 
intervention of electron–nuclear envelope modulation (ESEEM) can be avoided, 
because these artifacts result in peaks at known frequencies (near ± 14  MHz 
for proton-induced ESEEM); and (iii) imperfect background correction can be 
clearly seen as an artifact at zero frequency so it also can be disregarded in the 
fitting process.

Note that rmin and rmax can be assessed from the relations rmin(max)/nm = (52 
MHz/νmax(min))1/3, where νmax is the high-frequency boundary of the Pake spectrum, 
and νmin is taken slightly below the low-frequency maximum of the spectrum [25], 
with the exact rmin(max) values corrected a posteriori by comparing the experimen-
tal and simulated Pake spectra.

In order to find the distance distribution function P(r), we used approxima-
tion of P(r) by several Gaussian distributions [21–23]. Each Gaussian component 
is determined by the position of the maximum, the width and the relative weight, 
so the trial distance distribution function is constructed as
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=

=∑  where N is the number of Gaussians. The sets of ai, δi, ri are random 

values. The ai values vary between 0 and 1, the intervals for variation of δi and ri 
can be estimated from the frequency-domain PELDOR spectra [25]. It is assumed 
in Eq. (6) that δi << ri, which is normally fulfilled in PELDOR applications.

For each Ptrial(r) function, the trial Pake spectrum Ftrial(ν) is calculated by 
numerical integration of Eq. (4). Then the mean-squared deviations (MSD),

	
2

trial
1

1MSD ( ( ) ( )) ,
J

j j
j

F F
J

ν ν
=

= −∑ �
(7)

between the calculated Ftrial(νj) and the experimental F(νj) values are determined, 
where J is the number of points sampled in the frequency domain (it was between 
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6      A.G. Matveeva et al.

30 and 60 in this work). Different trials are compared and the distribution Ptrial(r) 
providing the smallest MSD value is selected as a solution.

In the computer calculations, the program performed 106–107 trials which 
took ~ 1 min on an ordinary PC.

3  �Experimental

3.1  �Synthesis

Biradicals II-10, III-10 and IV-10 were synthesized by reacting succinate Trolox 
2 with nitroxyl radicals 3–5 in the ratio 1 : 2 in tetrahydrofuran (THF) in the pres-
ence of a dehydrating agent carbonyldiimidazole (CDI) (Scheme 1) [26].

Spin-labelled diamides II-11, III-11 were obtained by reaction of disuccinate 
2-hydroxymethyl derivative Trolox 6 [27] with nitroxyl radicals 3 and 4 taken in 
the ratio of 1 : 2 in THF in the presence of CDI (Scheme 2).

Compounds II-11 and III-11 in Scheme 2 were synthesized in the same way as 
biradicals II-10, III-10, IV-10 in Scheme 1. For synthesis of biradical IV-11, disucci-
nate 6 was at first converted to succinamide 7 by reaction with N-hydroxysuccinim-
ide (NHS) in THF in the presence of CDI in the ratio of 1 : 2 [28], then further reacted 
with radical 5 in CH2Cl2 in the ratio 1 : 2, resulting in biradical IV-11 (Scheme 3).
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Scheme 1: Synthesis of biradicals II-10, III-10, IV-10.
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Scheme 2: Synthesis of biradicals II-11, III-11.
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To confirm the structure of biradical II-11 by NMR, the corresponding hydrox-
ylamine II-11a (see structure below) was obtained by reduction of II-11 in CD3OD 
with zinc in the presence of NH4Cl [29].
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In the 1H NMR spectrum of hydroxylamine II-11a, all the characteristic signals 
of succinyl group, hydroxypiperidine and Trolox fragments were observed. 
Signals of hydroxypiperidine fragment methyl groups had chemical shifts in 
ppm: 1.17–1.20. Signals of the methyl group in the phenolic moiety appeared at 
1.94–2.04 ppm and a CH3-2 signal at 1.33 ppm. Signals of CH2-groups of succinyl 
fragments appeared in the form of three triplets at 2.49, 2.61 and 2.96 ppm with the 
constant J = 6.6 Hz and at 2.65–2.71 ppm; a CH2-2 signal appeared at 4.07–4.26 ppm. 
The purity of compounds II-11, III-11, IV-11 was checked by thin-layer and high-
performance liquid chromatography methods.

Other details of the synthesis may be found in [26, 27].

3.2  �Sample preparation

Salt hybrids and biradicals were dissolved in either methanol or methyltetrahy-
drofuran (MTF) (both from Ekros-Analytica, St. Petersburg, Russia). Solutions 
were put in EPR tubes and then frozen by immersion into liquid nitrogen to 
form a transparent glass. For some experiments, a solution of monoradical II-H 
(compound 3 in Scheme 1) was also prepared.
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Scheme 3: Synthesis of biradical IV-11.
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8      A.G. Matveeva et al.

3.3  �EPR and PELDOR measurements

An X-band Bruker ELEXSYS E580 EPR spectrometer was used. PELDOR meas-
urements were carried out using a split-ring Bruker ER 4118 X-MS-3 resonator 
while a Bruker ER 4118X-MD5 dielectric ring resonator was used in continu-
ous wave (CW) EPR spectra measurements. A three-pulse PELDOR setup was 
employed. The pumping pulse length was 28 ns, and the lengths of the π/2 
and π pulses of the echo-forming detection pulse sequence were 16 and 32 ns, 
respectively. The time delay between two detection pulses was 800 ns. The 
pumping pulse was applied in all cases at the frequency νB corresponding to 
the maximum of the echo-detected EPR spectrum and was scanned with a step 
of 8 ns starting from the negative initial time delay d0 = –200 ns, respective 
to the first detection pulse. The turning angle of the pumping pulse was set 
to π in measurements in which the observation frequency νA was set equal to 
νB, the pumping pulse was positioned at time delay d0, and pumping pulse 
amplitude was varied to adjust the inverted echo signal to its minimum. The 
starting delay T for the PELDOR time trace analysis (T = 0) was determined as 
described in Ref. [30]. In PELDOR experiments, the difference νA – νB between 
the detection and pumping frequencies could be varied between 50 and 75 
MHz. The in-phase part of the primary echo was integrated with a time gate of 
80 ns. The changes in the PELDOR signal V(T) upon passage of the pumping 
pulse through the detecting pulses were corrected by the method described in 
Ref. [31].

The resonator was cooled in an Oxford Instruments CF-935 cryostat with 
flowing cold gaseous nitrogen. The sample temperature was kept near 120 K in 
CW EPR measurements and near 80 K in PELDOR measurements.

4  �Results

4.1  �CW EPR spectra

Typical representatives of CW EPR spectra are shown in Figure 1. These spectra 
are normalized to the same value of the double integral. One can see that the 
spectra for I-10 and II-11 biradicals are slightly broader than the spectrum for 
monoradical II-H. This may be readily ascribed to line broadening due to dipole–
dipole and/or exchange interactions in the biradicals. However, as the broaden-
ing is small, these interactions are obviously weak in the CW EPR experimental 
window.
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Multi-Gaussian Monte Carlo Analysis of PELDOR Data      9

4.2  �PELDOR data for salt hybrids I-10 and I-01

Figure 2 shows on a semilogarithmic scale the PELDOR time traces for salt hybrid 
I-10 and I-01 samples. (The difference νA – νB is 70 MHz.) PELDOR data for cova-
lently-linked biradical II-11 is also given here. One can see that both salt hybrids 
show simple exponential decay that is consistent with Eq. (2), so only the intermo-
lecular contribution is present here. The absence of intramolecular contribution 
unambiguously evidences that the substances perfectly dissociate in the solvent, 
producing only the corresponding I monoradicals. Note that similar results were 
obtained for both solvents, methanol and MTF.

4.3  �PELDOR data for covalently-linked biradicals

It is clearly seen in Figure 2 that for the II-11 biradical a fast component appears in 
addition to the slow exponential decay. The PELDOR time trace may be described 
as a product of intermolecular VINTER(T) and intramolecular VINTRA(T) components 
that is in line with Eq. (1). Analogous results were obtained for all other covalently 
linked biradicals (data not given). In all cases, the asymptotical VINTER(T) behavior 
could be approximated as purely exponential, i.e. fitted by a straight line on a 

Fig. 1: CW EPR spectra of 1.3 × 10−3 M I-10 and II-11 biradicals in methanol at 120 K, normalized 
to the same integral intensity. The spectrum of monoradical II-H recorded at the same condi-
tions is given for comparison.
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10      A.G. Matveeva et al.

semilogarithmic scale (like that shown in Figure 2), so the fast component was 
extracted for all biradicals from the experimental time traces by subtracting these 
straight lines.

After this subtraction, background-corrected VINTRA(T) time traces were obtained, 
which were then normalized according to Eq. (3) to produce the VN(T) time traces. 
These time traces were Fourier transformed, real (cosine) part was taken and so the 
Pake spectra were obtained – see Figure 3 (solid lines). In the insert to Figure 3, the 
input VN(T) time traces are given on a normal linear scale for the all samples studied 
(solid lines). One can see that VN(T) at large T attain asymptotic zero values.

The minor peaks seen in Figure 3 around ± 14 MHz are induced by ESEEM asso-
ciated with electron–nuclear interaction between the unpaired electron of the spin 
label and the nearby protons. To avoid undesirable influence of this effect, in Eq. 
(7) the vicinity of these peaks was omitted. The peaks in the center of the spectrum, 
seen in the range ± 1 MHz, are induced by imperfect elimination of the background 
time trace VINTER(T). These frequencies were also omitted when applying Eq. (7).

4.4  �Data analysis with multi-Gaussian fit in a completely 
random Monte Carlo process

In our calculations, we tried to use the number N of Gaussians equal conse-
quently to 2, 3 and 4. The obtained distance distributions for biradicals II-10 

Fig. 2: PELDOR time traces for 10−3 M solutions of I-01, I-01 and II-11 in methanol on a semiloga-
rithmic scale. The difference νA – νB is 70 MHz. The dashed straight line indicates an exponential 
asymptotic for II-11.
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are shown in Figure 4, along with results of fitting the Pake spectra (shown 
in insert). The calculated MSDs were 9.1 10−6 MHz−2 (for N = 2), 1.40 10−6 MHz−2 
(N = 3), and 1.36 10−6 MHz−2 (N = 4). For N = 2 the agreement between experimen-
tal and calculated Pake spectra is not satisfactorily: except of large value of 
the attained MSD, also the peculiarity near the 15 MHz is smeared – see insert 
to Figure 4. By other words, the experimental data are underfitted in this case. 
For N = 3 and N = 4 a rather good agreement could be achieved, with MSD of 
the order of the noise level (see below). However, for N = 4 some instability of 
the solution was found – different parameters for Gaussians provided similar 
results in the Pake lineshape (data not given), that is obviously because of the 
ill-posed nature of the mathematical problem and of the large number of the 
input parameters. So, 4 Gaussians overfit the experimental spectrum. Note 
however that the positions of maxima are not influenced by this overfitting (see 
Figure 4).

Figure 5 show how rapidly the Monte Carlo process converges, for the II-10 
biradical taken as an example. Here, the best fitted distribution functions are 
shown (the left panel) which were obtained for five different independent reali-
zations, along with the MSD values achieved (the right panel). One can see that 
106–107 runs allow to obtain reproducible results, with the MSD reaching an 
asymptotic constant value.

Fig. 3: Pake spectra – cosine Fourier transforms of the time-domain normalised VN(T) PELDOR 
data (solid lines), and their simulation (circles) using Eqs. (4–6) for the best-fitted Ptrial(r) func-
tions found by Monte Carlo multi-Gaussian fitting. Spectra are consequently shifted along the 
vertical axis by a step of 0.02 MHz−1. The input VN(T) data are given in the insert (solid lines), 
with the results of simulations (circles); the data are consequently shifted along the vertical 
axis by a step of 0.2, in the same order as the Pake spectra. The difference νA – νB is 70 MHz.
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12      A.G. Matveeva et al.

Note that convergence of the Monte Carlo process when fitting the inte-
gral equation (4) to a large extent is determined by the singularity in the core 
K(ν, r). This singularity makes the contribution of different distances essentially 

Fig. 4: The best-fitted simulations of the distance distributions obtained for the II-10 biradical 
using Monte Carlo multi-Gaussian fitting with indicated different number of Gaussians. The 
insert shows how these fittings simulate the experimental Pake spectrum. (thin and thick lines, 
respectively, data are shifted along the vertical axis by a step of 0.02 MHz−1). The number of 
runs is 107 in all cases.

Fig. 5: The illustration of convergence of Monte Carlo process, for the case of biradical II-10 
and 3-Gaussian fitting. Results of five independent realizations are shown for different number 
of runs indicated, for the distribution function (left panel), and MSD (right panel). Data in left 
panel are shifted along the vertical axis by a step of 1 nm−1. The dashed line in the right panel 
shows an asymptotic constant value.
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Multi-Gaussian Monte Carlo Analysis of PELDOR Data      13

non-equivalent so that each trial “selects” mostly only the Gaussian that is 
located closer to this singularity, and making the other Gaussians less important. 
So the number of independent parameters in the Monte Carlo search is effectively 
reduced.

The asymptotic value in Figure 5 (right) is determined by experimental noise. 
Note that it is not influenced by the restrictions imposed in the multi-Gaussian 
approximation – because 3- and 4-Gaussian fits for 107 runs provide nearly the 
same MSD value (see above).

Data in Figure 5 (left) may be employed for assessment of the accuracy how 
the distribution function can be restored from the real PELDOR experiment. All 
data here provides the MSD values (see Figure 5 (right)) of the order of experi-
mental noise. The simulations show that the positions of both maxima vary only 
slightly either for different number of Gaussians employed (3 or 4) – see Figure 4, 
or for different number of trials – see Figure 5. From data presented in Figures 4 
and 5 we estimate the possible variation of the maxima positions as ± 0.005 nm. 
Meanwhile the data in Figure 4 show that the peak widths may vary by ± 10% 
from their mean values.

To assess the variability of results in various applications, one should 
compare results of calculations for different number of Gaussians and different 
number of trials, like it is shown in Figures 4 and 5, having in mind also the MSD 
level determined by the experimental noise.

To additionally confirm results of the used multi-Gaussian fit approach, 
we performed also calculations using the traditional Tikhonov regularization 
method, employing the DeerAnalysis software [18]. In addition, the recently pro-
posed approach [25] which employs increasing the discretization length up to 
the threshold where numerical calculation of the integral (4) still provides agree-
ment with experiment was also employed. The comparison of these three differ-
ent approaches for the II-10 biradical is shown in Figure 6. As in the DeerAnalysis 
the L-curve for this biradical was found to be smooth (data not given), the optimal 
regularization parameter was chosen manually by its adjusting for the best coin-
cidence of the experimental and simulated Pake spectra, accompanying with the 
best coincidence of the obtained P(r) distribution with that found here. The insert 
to Figure 6 shows comparison of the experimental and simulated Pake spectra in 
all these three cases. One can see that data in Figure 6 show the similar distance 
distributions for the all three approaches.

Results of multi-Gaussian fitting for the all series of biradicals studied are 
shown in Figures 3 and 7. Three-Gaussian fitting (N = 3) was employed for all 
cases, with number of trials 107. The circles shown in Figure 3 are the approxi-
mation of the Pake spectra obtained using the proposed algorithm. (The circles 
in the insert to Figure 3 shows the analogous time-domain data). One can see a 
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14      A.G. Matveeva et al.

Fig. 6: The best-fitted simulations of the distance distributions obtained for the II-10 
biradical using different approaches: (1) Monte Carlo three-Gaussians fitting as sug-
gested here (the same data as in Figure 4), (2) the increasing of the discretization length 
in line with [25], (3) DeerAnalysis with Tikhonov regularization algorithm [18]. The insert 
shows how these approaches simulate (thin lines) the experimental (thick lines) Pake 
spectrum.

Fig. 7: The best-fitted Ptrial(r) distributions found in the Monte Carlo search described in the 
text. The upper curves correspond to ‘long’ biradicals (x + y = 2); the lower curves corre-
spond to ‘short’ biradicals (x + y = 1). The upper curves are shifted along the vertical axis by 
3.5 nm−1.
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Multi-Gaussian Monte Carlo Analysis of PELDOR Data      15

rather good agreement between experiment and simulations. The best-fitted dis-
tribution functions Ptrial(r) are shown in Figure 7.

One more caution with the obtained results may be related with the phenom-
enon of orientational selectivity in PELDOR experiments [32] – when PELDOR 
data depend on the mutual orientation of the spin labels in the biradicals. We per-
formed orientation selection experiments in which the difference νA – νB between 
the detection and pumping frequencies was varied between 50 and 75 MHz – see 
data in Figure 8 (biradicals II-10). The time-domain data in Figure 8 (left panel) 
show that for different νA – νB values the obtained results are similar, except of 
small variation of the depth of the first minimum. However, the Pake spectra 
(right panel) show that this variation is induced by different contribution of the 
proton ESEEM around ± 14 MHz. Some variations in the central part of the spectra 
could be attributed to the uncertainty in background correction when refining the 
pure VINTRA(T) contribution. Anyhow, the shoulders near ± 15 MHz are present in 
all the spectra; this shoulder reflects the maximum of the P(r) distribution seen at 
1.5 nm in Figure 7 for this biradical.

Also, the efficiency of the pumping pulse action is almost independent on 
the νA – νB value – see insert to Figure 8. So we conclude the orientation selection 
is not critical for our systems. As orientation selection is observed when both 
nitroxides in a biradicals are strongly spatially restricted [32], this result means 
that in our systems these nitroxides are spatially distributed.

Fig. 8: The time domain (left panel) and the corresponding frequency-domain (right panel) 
PELDOR data obtained at different difference νA – νB between the detection and pumping 
frequencies (biradicals II-10). Data are consequently shifted along the vertical axis by 0.2 (left) 
and by 0.01 MHz−1 (right). In the insert the efficiency of the pumping pulse action pB is given for 
different νA – νB. values.
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5  �Discussion
One can see in Figure 7 that for short biradicals (x + y = 1) the distribution is nar-
rower than that for the long biradicals (x + y = 2). The other point worth mention-
ing is that a change of the type of spin label may have a dramatic impact on the 
distribution function, both for short and for long biradicals (except for the cases 
of III-10 and IV-10).

Note that the fact that the distribution function could be well approximated 
by three Gaussians does not mean that it contained three separate components. 
In some cases, such as for biradicals III-11 and IV-10, distance distribution clearly 
consisted of a single asymmetrical peak that was merely well reproduced on the 
basis of the three Gaussians.

Figure 7 shows extended background line in the distance distributions 
P(r) for biradical II-11. This line can be ascribed to imperfect elimination of the 
VINTER(T) contribution in Eq. (1) by the employed simple exponential approxima-
tion. However, this effect is small and may be neglected.

Data in Figure 7 show maxima located at the distances of 1.5 nm (biradicals 
II-10, III-10, IV-10), 1.6 nm (IV-11), 1.8 nm (II-10, III-11), and 2.2–2.3 nm (II-11, 
IV-11). The chemical structure of biradicals predicts that 1.5–1.8  nm for short 
biradicals corresponds to fully extended conformations. For long biradicals, 
the same is valid for 2.2–2.3 nm. Distance distributions around these positions 
reflect flexibility of the biradicals. Biradicals II-10, II-11 and IV-11 obviously 
possess several conformations. (For II-10, presence of two conformations is 
clearly seen even in Figure 3 from the Pake spectra). Comparing data for short 
biradicals II-10 with III-10 and IV-10, one may notice that this flexibility is 
larger for the 6-member-ring nitroxides then for the 5-member-ring ones. More 
precise analysis of biradicals conformations is possible applying computational 
methods of molecular mechanics.

6  �Conclusions
In this work, PELDOR measurements were performed for six new flexible nitrox-
ide Trolox-based biradicals. The PELDOR data analysis was based on regulari-
zation of an integral equation solution by its restriction to a sum of a limited 
number of Gaussians. The positions, widths and amplitudes of Gaussians were 
found by fitting the frequency-domain PELDOR spectra in a completely random 
Monte Carlo process. In the employed fitting procedure, sticking to local minima 
is avoided automatically because the consequent Monte Carlo trials are uncorre-
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lated. The number of Monte Carlo trials was found to be quite reasonable, which 
is explained by the singularity in the kernel of the frequency-domain integral 
equation.

It was found that in all cases the use of only three Gaussians was enough 
for good agreement with the experiment – for a large variety of different nitrox-
ide biradicals. The suggested approach also allows estimation of the uncertainty 
of obtained parameters induced by experimental noise. To get the solution, the 
program performed 106–107 trials which took ~ 1 min on an ordinary PC.

To assess the variability of results, one should compare calculations for dif-
ferent number of Gaussians and different number of trials, having in mind also 
the MSD level determined by the experimental noise.

Although the employed multi-Gaussian fit is not a model-free approxima-
tion, it nevertheless could be applied for other doubly spin-labelled molecules: 
proteins, DNA, RNA and peptide antibiotics. The only criterion for checking its 
validity would be good agreement in each particular case between the experi-
mental and simulated data, attained within the experimental noise. The number 
of Gaussians must be meanwhile reasonably small – three or four, – otherwise the 
solution may become unstable because of the ill-posed nature of the mathemati-
cal problem.
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