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a b s t r a c t

We performed a comprehensive analysis of the extension of the discrete dipole
approximation (DDA) to a rectangular cuboid lattice of dipoles. The theoretical analysis
of two different approaches, based either on the point–dipole interaction or on the
integration of Green's tensor (IGT), was performed starting with the rigorous integral
equation for the electric field. We showed that the expressions for polarizability and
interaction terms must strictly conform to each other, which resolves the existing
controversy in the literature. Moreover, there are large differences between the spectra
of the interaction matrix in the static limit for those DDA formulations. In particular, the
point–dipole formulation leads to unphysical edges of the spectrum that deteriorate the
convergence of the iterative solver with increasing refractive index. This severely limits
the applicability of point–dipole DDA formulations with rectangular dipoles in contrast to
the case of cubic dipoles. We implemented both above formulations in the open-source
code ADDA and illustrated their performance on a number of test cases. In particular, we
considered a graphene sheet, with thickness much smaller than the wavelength. The use
of rectangular dipoles (with IGT) resulted in up to 100-times decrease of both simulation
time and memory requirements, keeping the satisfactory accuracy. Similar improvements
are expected for any strongly oblate or prolate particles in which the smallest dimension is
much smaller than the wavelength.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The discrete dipole approximation (DDA) is a widely
used method to simulate scattering and absorption of
electromagnetic waves by particles of arbitrary shape
and internal structure [1,2]. Initially the DDAwas proposed
by Purcell and Pennypacker [3] on the basis of the physical
picture of the point dipoles set. This approach was further
advocated by Draine and coworkers [1,4,5]. However, the
inetics and Combus-
, Russia.
.

DDA can also be rigorously derived by discretization of the
volume integral equation for the electric field [2,6–8]. In
most cases the DDA is used with a cubic lattice of dipoles,
because it permits the use of the fast Fourier transform
(FFT) to greatly accelerate computations [9]. For such cubic
lattice both DDA variants are mathematically equivalent,
leading to the same equations. In principle, many DDA
formulations exist, modifying either the interaction
between dipoles or a formula to calculate dipole polariz-
ability from the scatterer's refractive index [2]. However,
they all aim at rather small corrections, usually of relative
order (kd)2, where k is the free-space wave number and d
is the dipole size (lattice spacing). In particular, all those
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formulation converge to the exact solution, when number
of dipoles goes to infinity for a fixed scattering problem
[10]. Due to the above equivalence the term “dipole” is
used interchangingly both for the point dipole in a lattice
(empirical DDA picture) and for volume discretization
element (derivation from the integral equation) in the
literature. We will further refer to this standard case as
“cubic dipoles”.

Certain DDA applications are concerned with very
prolate or oblate particles [11–16], where cubic dipoles
are definitely inefficient. Consider, for example, a graphene
nanoplate with sizes 9 μm�9 μm�20 nm [11]. Dipole
size has to be small to fit into the nanoplate thickness,
which implies redundantly large number of dipoles to
cover the width. The natural solution to this problem is use
of “rectangular dipoles”, more precisely, point dipoles or
volumetric elements in the form of rectangular parallele-
pipeds placed on a rectangular cuboid lattice, which can be
optimized for particular aspect ratios of the scatterer. This
approach is compatible with the FFT acceleration and has
been discussed in a number of papers [5,8,14,17,18].
Unfortunately, this discussion has mostly been theoretical
without even test simulations.

In particular, Gutkowicz-Krusin and Draine [5] consid-
ered an infinite rectangular lattice of point dipoles and
derived their polarizability (up to second order of kd) from
the requirement that it should give the correct result for a
plane wave in a homogeneous medium. We further denote
this approach as corrected lattice dispersion relation
(corrected LDR or CLDR), since in the specific case of cubic
dipoles it is a minor correction to the previously derived
LDR [4]. Only this specific case is implemented in the latest
release of the DDSCAT code [19] and has been used for
published simulations. We note, however, that traces of
support for general rectangular lattice can be found in the
code, in particular, in the input shape file. Similar
rectangular-lattice sums, but for magneto-electric dipoles,
were considered by Landy and Smith [18]. However, the
simulation results were also presented only for cubic
lattice. Massa et al. [20] proposed to use polarizability of
the small rectangular parallelepiped, computed under
assumption that electric field inside it is constant [21],
which is reasonable for a volume element inside a larger
scatterer. The same formulae were earlier derived by Tsang
et al. [17]. Again, the simulation results were presented
[20] only for a cubic lattice, when it is equivalent to the
independently derived “integration of Green's tensor”
(IGT) formulation of the dipole polarizability [22] (com-
puted up to the second order of kd). The problem is that for
non-cubic dipoles the IGT expression for polarizability is
markedly different from that based on abovementioned
lattice sums even in the limit kd-0.

A different approach was proposed by Chaumet et al.
[8], who introduced the (full) IGT formulation of the DDA
both for the interaction between dipoles and for their
polarizability. Those formulae can be directly employed for
both cubic and general rectangular dipoles, but the simu-
lation results were presented only for the former. The IGT
polarizability formula was given as an integral [8], but it
should approximately equal the abovementioned closed-
form expression of (second-order) IGT. Therefore, in the
following we do not distinguish between those two. Tsang
et al. [17] also mentioned that using IGT interaction (at
least for nearby dipoles) can improve the accuracy, but
implied that point–dipole interaction can be used as well
(as in [20]). Recently, Agha et al. [14] used IGT-DDA (albeit
naming it a dyadic Green's technique) with certain numer-
ical optimizations to compute integrals. To the best of our
knowledge, that is the only paper that actually presented
simulation results using the rectangular (non-cubic)
dipoles. Use of the latter resulted in up to 3-fold faster
simulation for 20�20�100 nm3 silver nanorod (with
comparable accuracy).

In the current paper we, first, theoretically analyze the
different approaches to use rectangular dipoles in the DDA,
including spectral properties of the interaction matrix, and
solve the controversy between the IGT and lattice-sums
polarizabilities. Second, we implement both possible for-
mulations in the open-source code ADDA [23] and test
their relative performance. In particular, we show that the
slow convergence of the iterative solver becomes a serious
issue for lattice-sums approach applied to large refractive
indices. Third, we apply the rectangular-dipole DDA to
several sample oblate or prolate particle and show that it
gives large acceleration (up to 100 times) compared to the
standard DDA.

Finally, we note that the considered rectangular dipoles
imply rectangular lattice of such dipoles and are, thus,
different from cubic lattices of anisotropic (including
rectangular) dipoles, which can be used to model either
homogeneous scatterers with anisotropic refractive index
[16,23,24] or inhomogeneous metamaterials [25]. Both
latter cases were successfully treated with the standard
DDA codes.
2. Rigorous derivation of the DDA

For completeness we recall the standard derivation of
the DDA from the integral equation for the electric field E
[2,22]. Assuming exp(� iωt) time dependence and non-
magnetic scatterer, the integral equation is given as

EðrÞ ¼ EincðrÞþ
Z
V\V0

d3r0Gðr; r0Þχðr0ÞEðr0Þ

þMðV0; rÞ�Lð∂V0; rÞχðrÞEðrÞ; ð1Þ

where Einc(r) and E(r) are the incident and total electric
field at location r, χðrÞ ¼ εðrÞ�1ð Þ=4π is the susceptibility
tensor of the medium at point r (for arbitrary electric-
permittivity tensor ε). V is the volume of the particle and
V0 is a smaller volume centered at r. Gðr; r0Þ is the free
space Green's tensor, defined as

Gðr; r0Þ ¼ GðRÞ ¼
Ra0

expðikRÞ
R

k2 I� R̂R̂

R2

 !
�1� ikR

R2 I�3
R̂R̂

R2

 !" #
;

ð2Þ

where R¼ r�r0, R¼ Rj j, R̂R̂ is a dyadic defined as
R̂R̂μν ¼ RμRν (μ and ν are the Cartesian components of
the vector or tensor), I is the unity tensor, M is the
following integral associated with the finiteness of the
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exclusion volume V0

MðV0; rÞ ¼
Z
V0

d3r0 Gðr; r0Þχðr0ÞEðr0Þ�G
stðr; r0ÞχðrÞEðrÞ

� �
; ð3Þ

where G
stðr; r0Þ is the static limit (k-0) of Gðr; r0Þ:

G
stðr; r0Þ ¼

Ra0
� 1

R3 I�3
R̂R̂

R2

 !
; ð4Þ

L is the so-called self-term tensor, related to the excluded
singularity of Green's tensor:

Lð∂V0; rÞ ¼ �
I
∂V0

d2r0
n̂0 R̂

R3 ; ð5Þ

where n̂0 is an external normal to the surface ∂V0 at point
r0.

To solve Eq. (1) we divide V into subvolumes (dipoles)
Vi, i¼1, …, N, centered around ri, and assume both χ and E
are constant within each dipole, leading to

Ei ¼ Einc
i þ

X
ja i

GijV jχjEjþ Mi�Li
� �χiEi; ð6Þ

where Ei¼E(ri), χi ¼χðriÞ, Einc
i ¼ EincðriÞ, Li ¼ Lð∂Vi; riÞ,

Mi ¼
Z
Vi

d3r0 Gðri; r0Þ�G
stðri; r0Þ

� �
; ð7Þ

Gij ¼
ia j

1
Vj

Z
Vj

d3r0Gðri; r0Þ: ð8Þ

Such formulation is equivalent to the method of
moments [26] applied to Eq. (1), using unit pulse and
delta-function (point-matching) as basis and testing func-
tions, respectively. And that is exactly the IGT formulation
of the DDA [8]. Thus, we confirm that IGT is a direct
consequence of Maxwell equations for any set of discreti-
zation elements Vi. The only approximation used is that of
slow variation of χ and E, which is reasonable if small
enough dipoles are used. In particular, the solution of
Eq. (6) should converge to the true one with refining
discretization [10].

Let us further define the self-term Green's tensor as

Gii � Mi�Li
� �

=Vi; ð9Þ
dipole polarization as Pi ¼ ViχiEi, and its polarizability as

αi ¼ ðViχiÞ�1�Gii

� ��1
¼ Viχi I�GiiV iχi

� ��1
: ð10Þ

Using these definitions, Eq. (6) can be rewritten in the
standard DDA form:

α�1
i Pi�

X
ja i

GijPj ¼ Einc
i : ð11Þ

Further on we consider Vi to be equal rectangular
parallelepipeds (d1�d2�d3) placed on a rectangular
cuboid lattice. To describe the dipole size with a single
variable we use d¼max(d1,d2,d3). Corresponding expres-
sions for Li and Mi are given in Appendix A.

3. Set of point dipoles

To relate the IGT formulation to that corresponding to
point dipoles we need to take a closer look at the commonly
used approximation of replacing Gij (cf. Eq. (8)) by

G
0
ij ¼Gðri; rjÞ: ð12Þ

This approximation is reasonable when the dipoles i and j
are far apart but can be very wrong (relative error of order 1)
for a specific pair of nearby, especially touching, dipoles. The
reason why this approach works fine for cubic dipoles is
discussed in [10]. Briefly, the single value of Gij is not
important, rather the sum in Eq. (11) is. Generally (for most
dipoles) the dipole i is at least several dipoles far from the
particle surface or any internal interface. Then we can divide
the sum into that over cubic shells around the dipole i and
consider only a few of the closest shells, where the difference
between Gij and G

0
ij is expected to be the largest. Those shells

are inside a homogeneous medium and corresponding dis-
tances are much smaller than the wavelength λ, then as first
approximation G� G

st
and PjEconst. In this case, the sum in

Eq. (11) over nearby shells boils down to the sum over Gij

alone, which is either an integral over cubically symmetric
volume or a sum over cubically symmetric set of points of
G
stðri; r0Þ. Both of those equal zero due to symmetry and are

thus equal to each other. To conclude, the difference between
Gij and G

0
ij causes only O(kd) differences in the solution of the

DDA equations for cubic dipoles [10].
The above immediately explains what goes wrong for

rectangular dipoles – the shells are no longer cubically
symmetric and, therefore, the O(1) differences between Gij

and G
0
ij do not cancel out. Hence, combining point–dipole

Green's tensor with the polarizability, defined by Eqs. (9)
and (10), (which was implied by Massa et al. [20]) leads to
completely wrong results. We did confirm it by simula-
tions – the error increases with aspect ratio of the dipoles,
but does not decrease to zero with refining discretization
(data not shown).

Still, a dense enough set of point dipoles placed on any
regular grid seems an appropriate approximation of a homo-
geneous medium. The critical question then is that of dipole
polarizability, which must be different from that in the IGT
framework. Following [5], let us consider a test problem of
infinite homogeneous media, where a plane incident wave is
propagating. Since our goal here is to illustrate the phenom-
enon, we limit ourselves to the static limit (k-0), while the
general case up to the third order of kd is discussed in
Appendix B. Physically, this case corresponds to a small sphere
V in a constant incident field Einc; the total field E inside
sphere is also constant. First, consider Eq. (1) with spherical
exclusion volume and r in the center of V. Then, the integral is
zero due to symmetry,M¼ 0, and L¼ 4π=3

� �
I, leading to the

well-known solution:

E¼ 1þ4π
3
χ

� ��1

Einc ¼ 3 εþ2I
� ��1

Einc: ð13Þ

The same solution should be obtained for a set of
identical point dipoles [Eq. (11)], which implies

Vd

X
j

G
st
ij ¼ �4π

3
I; ð14Þ

where i corresponds to the dipole in the center and Vd is
the dipole volume. Since the particle is assumed much
larger than d, we can effectively extend the sum in Eq. (14)

Maxim
Cross-Out
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to an infinite dipole grid. Note, however, that the obtained
sum is conditionally convergent and the result may
depend on the order of summation, see e.g. [27]. Thus,
we consider it as a sum inside a sphere (or a cube), which
size is then increased to infinity (conforming to the
spherical shape of the original particle). Eq. (14) is the
main ingredient in explaining the existing controversy –

expression for the polarizability (or Gii) must conform to
the expression for the interaction part (Gij).

For cubic dipoles, Eq. (14) is trivial. In both IGT and
point–dipole formulations, the sum over any cubic shell of
dipoles is zero due to symmetry (see discussion above),
leaving only VdG

st
ii ¼ �ð4π=3ÞI, which in turn implies the

standard Clausius–Mossotti (CM) polarizability [2]. Note,
however, that considering the actual particle (finite grid)
in Eq. (14) results in polarizability corrections that are
significant for dipoles near the surface [28].

For rectangular dipoles, the situation is markedly dif-
ferent. In the IGT formulation we can still use that the
integral in Eq. (1) is zero (for spherical V0 smaller than the
dipole), which together with Eq. (14) implies

VdG
st
ii ¼ �

Z
Vi\V0

d3r0G
stðri; r0Þ�

4π
3
I¼ �Lð∂ðVi\V0Þ; rÞ

�Lð∂V0; rÞ ¼ �Lð∂Vi; rÞ; ð15Þ
which is exactly Eq. (9) in the static limit. In the point–
dipole formulation we rewrite Eq. (14) as

G
st;0
ii ¼ �

X
ja i

G
st;0
ij � 4π

3Vd
I: ð16Þ

Evaluation of these lattice sums, as well as extension to
the non-static case, is given in Appendix B. The latter
corresponds to modification of Eq. (14), but leads to
corrections of O((kd)2) or smaller, which become negligible
with refining discretization. Therefore, it is Eq. (14) that
determines the main (zeroth-order) term of the polariz-
ability, which in turn determines whether the method is
numerically exact or not.

So far we have shown that the point–dipole formula-
tion, given by Eqs. (12) and (16), works fine for a particular
test problem. To gain more confidence in this formulation
let us perform an analysis similar to that in the beginning
of the current section. In particular, we show that although
the difference between Gij and G

0
ij can be large for a

particular pair of nearby dipoles, it approximately cancels
out in a sum over all j, including the dipole i itself.
Consider a sphere Vs with radius Rs around dipole i (a
cube will work as well), such that minðλ;DiÞ⪢Rs⪢d, where
Di is the distance from dipole i to the closest interface. We
assume that dipole i corresponds to a most common case
(far from interface) and d is small enough. Then outside of
the sphere Gij �G

0
ij , and the equality is exact in the limit d/

Rs-0. Inside the sphere PjEPi and G� G
st
, both exact in

the limit Rs/min(λ,Di)-0. Therefore,

X
j

G
0
ijPj ¼

X
jAV s

G
0
ijPjþ

X
j=2V s

G
0
ijPj �

X
jAVs

G
st;0
ij

0
@

1
APi

þ
X
j=2Vs

GijPj �
X
jAV s

G
st
ij

0
@

1
APiþ

X
j=2Vs

GijPj �
X
j

GijPj; ð17Þ
where in the middle we used
X
jAVs

G
st;0
ij ¼

X
jAR3

G
st;0
ij �

X
jAR3\V s

G
st;0
ij � � 4π

3Vd
I

�
X

jAR3\V s

G
st
ij �

X
jAVs

G
st
ij ; ð18Þ

which follows from Eq. (14) applied both to G
st
ij and G

st;0
ij . If

we set, e.g., Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dU minðλ;DiÞ

p
and take the limit of

infinite discretization (d-0), then all equalities in Eqs.
(17) and (18) become exact ones, i.e., Eq. (11) and hence its
solution for point–dipole formulation converges to that of
IGT. More detailed analysis, including a small fraction of
dipoles near the interfaces and tracking the errors as
orders of kd, can be performed similar to that in [10].
However, we leave it for future studies.

In other words, the polarizability, defined by Eq. (16),
compensates the difference between G

0
ij and Gij accumu-

lated for all dipoles inside Vs. Such compensation is only
possible if Rs is small enough, so that variation of dipole
polarization can be neglected. And it comes at a cost of
effectively enlarging the dipole size, since the point–dipole
DDA equations are correct at a scale Rs instead of d. Hence,
one can expect that the accuracy of the point–dipole
formulation with rectangular dipoles would be worse than
that of the IGT for the same discretization. Another
problem associated with the point–dipole formulation is
discussed in Section 4.

4. Spectral properties

Following [29], let us consider the (eigen-)spectrum of
the interaction matrix and operator. Note that these
spectra are completely different from the wavelength
spectrum. To simplify discussion, we consider only homo-
geneous scatterers with isotropic ε in this section, as well
as in all simulations further on. However, the case of
general tensor ε is also tractable [30]. First, we rewrite
Eq. (6) in the matrix form as

BE¼ Iþðε�1ÞZð ÞE¼ Einc; ð19Þ
where E and Einc are arrays compounded from Ei and Einc

i
for all dipoles, Z¼�VdG/(4π), matrix G includes the values
of Green's tensor, including the diagonal ones, I is the
identity matrix. Matrix Z depends only on the shape and
size of the scatterer and is independent of ε. Complex-
symmetric matrices B and Z are finite discretizations of
corresponding infinite-dimensional singular operators, cf.
Eq. (1), which we further denote as ℬ and Z, respectively.

Budko and Samokhin [30] proved that in the static
limit, all eigenvalues of Z are real values between 0 and 1
(so-called essential spectrum). The latter is supplemented
by morphological-dependent resonances (e.g., Mie reso-
nances [31]) for larger scatterers [30,32]. The analysis of
such resonances, if possible at all, will be inherently
limited to a particular particle shape. Hence, for the
remainder of this section we consider only the static case
as it provides general insights on the difference between
the DDA formulations. In this case, the matrix B is
Hermitian and Z is real symmetric, both independent of
the particle size. The latter has real eigenvalues {zn}, which

Maxim
Cross-Out

Maxim
Sticky Note
Int(V/V0) = 0 = Int(V/Vi) + Int(Vi/V0) =>-Int(V/Vi) = Int(Vi/V0) = -L(d(Vi/V0))



Fig. 1. Spectral function f(z) in a logarithmic scale for (a) a sphere and (b)
a cube for point–dipole (CM) and IGT DDA formulations, using cubic and
rectangular (1:1:2) dipoles. Both shapes are discretized using 16 dipoles
along the x-axis, f(z) is smoothed with a bin width 0.1. Vertical lines
denote the bounds of spectrum of operator Z.
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are also called generalized depolarization factors (form-
factors), in analogy to the electrostatic problem for ellip-
soid [33]. This spectrum is critical for the solution of
Eq. (19) – if 0 is close or equal to an eigenvalue of B the
problem is ill-posed or solution does not exist at all. This
condition corresponds to ε¼ 1�1=z. The interval zA[0,1]
is safe, as it corresponds to physically unrealistic cases of
real negative ε, including extreme cases of 0 and 1 that
require separate consideration. However, any other real
value of z corresponds to a finite real positive ε.

As noted above, spectrum of Z belongs to [0,1], imply-
ing that Eq. (1) is solvable for any physical ε. But any
finite-dimensional approximation {zn} is only expected to
converge to the operator spectrum with refining discreti-
zation. Numerical tests [29,30,32,33] proved that values of
zn approximately fall into [0,1]; however, strict compliance
does not necessarily take place. The point–dipole formula-
tion of the DDA with cubic dipoles, equivalent to the CM
one in the static limit, leads to “spill-out” of the spectrum
by less than 0.1 [33], which should not cause problems
except for high-contrast dielectric problems (ε410 or
0oεo0.1).

To analyze the spectra in a meaningful way one should
account for largely different contribution of different eigen-
values. The weights fn depend on the particular scattering
quantity of interest; in the following we consider those
corresponding to the orientation-averaged absorption cross
section 〈Cabs〉 normalized by particle volume [29,33]:

Cabs
	 

kV

¼ Im
X3N
n ¼ 1

f n
1=ðε�1Þþzn

¼ Im
Z

f ðzÞ dz
1=ðε�1Þþz

; ð20Þ

f n ¼
1
3N

X3
μ ¼ 1

ðun; eμÞ2; f ðzÞ ¼
X3N
n ¼ 1

f nδðz�znÞ; ð21Þ

where un is an eigenvector corresponding to eigenvalue zn, eμ
is the vector combined of N copies of unit vector along the μ-
axis. The function f(z) fully describes the shape of the particle
and is expected to converge to the one corresponding to Z
with refining discretization. In particular, this limit is δ(z�1/3)
for a spherical particle.

We have computed f(z) for a sphere and a cube, using
two DDA formulations and two types of dipoles – cubic
and rectangular ones (elongated two-fold along the
z-axis). For that we created a program in Mathematica,
independent of the code described in Section 5 but based
on the same formulae in the static limit. We used 16
dipoles along the x-axis. Unfortunately, significant increase
of this number, e.g., to study the convergence of f(z), is
computationally prohibitive, since the complexity of spec-
tral analysis is O(N3) in contrast to O(N log N) of a single
DDA solution. We have further smoothed f(z) by simple
averaging with a bin width of 0.1; the results are presented
in Fig. 1. First, note the general dependence of f(z) on
shape. For a sphere it is concentrated in the vicinity of
z¼1/3, while for a cube it has large values over a large
fraction of interval [0,1], falling off exponentially only close
to 0 and 1. Apart from that the behavior of f(z) for different
DDA variants is similar for both shapes; thus, further
conclusions are expected to be shape-independent.
All four DDAvariants agree for the largest values of f(z) and
hence should have comparable accuracy in DDA simulations
for ε far from resonance regions (see below). The tails of f(z)
near z¼0 and 1 are systematically larger for rectangular
dipoles, which can be partly explained by the twice smaller
number of dipoles. The CM formulation for cubic dipoles leads
to a small spill-out of the spectrum in line with above-
mentioned published results. By contrast, the spectrum of Z
for the IGT is always within the interval [0,1], both for cubic
and rectangular dipoles. This shows that IGT does a better job
at approximating the spectrum of Z, which is not totally
unexpected. However, a rigorous proof of such spectrum-
preserving property is not readily available. In this respect, the
IGT is similar to the “filteredcoupled dipoles” (FCD) formula-
tion of the DDA for cubic dipoles [29].

Finally, the most important and striking feature in Fig. 1
is the wide tails of f(z) for CM formulation with rectangular
dipoles. Although the absolute values of f(z) are small on
the tails (decay exponentially), they present a large pro-
blem for corresponding values of ε in terms of both
accuracy (cf. Eq. (20)) and convergence of the iterative
solver. For instance, such common refractive index as
m¼1.5 (corresponding to z¼�0.8) is already very hard
for such DDA formulation. Moreover, the spectrum of B is
now not a line from 1 to ε, but significantly extends on
both ends. According to the analysis of Rahola [32], this
leads to significantly slower convergence of the iterative
solver, even for values of ε far from the abovementioned
resonances (see also Fig. 4(b) below).

Maxim
Inserted Text
 



Fig. 2. Same as Fig. 1(a), but only for point–dipole (CM) DDA formula-
tions, using cubic and three different rectangular dipoles. f(z) is smoothed
with a bin width 0.15. Vertical lines depict the corresponding values of
R0(3).

Fig. 3. Relative errors of Qext versus 1/nx in log–log scale for (a) a sphere
and (b) a cube with kD0¼8 and m¼1.4. Several DDA formulations are
used both with cubic and rectangular 1:1:2 dipoles.

D.A. Smunev et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 156 (2015) 67–7972
The rigorous derivation of the spectral spill-out width
as a function of dipole aspect ratios is a challenging task
outside the scope of this paper. However, this width is
comparable to the correction to the diagonal of the matrix
Z by lattice sums (Eq. (B7)). In particular, we computed f(z)
for the same sphere using elongated dipoles with different
aspect ratios from 1:1:1 (cubic) to 1:1:3. The result in Fig. 2
shows that the left boundary is well approximated by
z¼R0(3) (Table B1), depicted as vertical lines. This correla-
tion can be partly explained by the fact that lattice-sum
correction is designed to compensate the inherent flaws of
the point–dipole formulation (Section 3). Since this com-
pensation is not perfect due to finite discretization, there
should be a residual spectral spill-out with the width
comparable to the spectrum of the correction. The largest
of the latter in absolute value is R0(3). Note also that the
right tails of f(z) in Fig. 2 are approximately symmetric to
the left ones with respect to z¼1/3.

The main practical consequence is that the spectral
spill-out (and all associated problems) increases with
increasing dipole aspect ratio. As shown in Appendix B,
absolute value of components of R0 increases without limit
in this case, that results in the spectrum of Z occupying the
whole real line. By contrast, the diagonal elements of Z in
the IGT formulation are always in the range [0,1], even
allowing the limit of infinitely thin plate- or needle-like
dipoles (Appendix A). This indicates that off-diagonal
terms do not have principal flaws that would require
drastic compensation.

To finalize this section we note that there exist at least
two ideas to alleviate the spectral spill-out of point–dipole
DDA formulation. First, the iterative solver may produce
reasonable result even for singular linear system, if the
iterations are stopped early enough [34]. Thus, the applic-
ability domain in terms of refractive index can be enlarged
if relatively large threshold for the convergence of the
iterative solver is used, e.g., 10�2 instead of usually used
10�5, and the corresponding errors are acceptable. Second,
filtering of Green's function has the potential to remove
the spectral spill-out altogether, but it requires an exten-
sion of the FCD formulation, including derivations of all
formulae [35], to a general rectangular grid of dipoles.
Both these ideas are interesting topics for future research.

5. Software implementation

We have implemented the DDA formulations with
rectangular dipoles, described in Sections 2 and 3, in the
open-source DDA code ADDA. The details of the code,
including specific formulae used to calculate far-field
scattering quantities, are given in [23]. The main addition
from the user perspective is the new command line option
“-rect_dip 〈x〉 〈y〉 〈z〉”, specifying the aspect ratio of the
dipoles, e.g., “11 2”. ADDAwill then automatically use such
dipoles in shape generation and further calculation. The
rest of the user control is accomplished by existing ADDA
functionality with clarification that command line options
specifying dipole size, like “-dpl …”, now apply to the size
along the x-axis (the argument equals λ/d1).

Most relevant existing command line options are “-int

…” and “-pol …”, which determine the interaction term and
dipole polarizability (self-term), respectively. The inter-
action term is calculated using either the point–dipole
formula (Eq. (12)) or the IGT (Eq. (8)). The latter is imple-
mented with minor changes in the existing code that was
previously used for cubic dipoles, and was originally devel-
oped in [8]. The only drawback of this IGT implementation
is that it requires a lot of computational time (comparable



Fig. 4. Contour plot of Niter (in log scale) versusm for kD0¼1 sphere using the CLDR (a, b) and IGT (c, d) DDA formulations with cubic (a, c) and rectangular
1:1:2 (b, d) dipoles. Black regions mostly include the cases where the iterative solver was stopped after maximum allowed number of iterations.
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to 500 iterations of the iterative solver). However, this
problem can be alleviated by calculating the integral
accurately only for nearby dipoles (within the cutoff dis-
tance RIGT) and using G

0
ij for larger distances. This is

achieved by “-int igt oRIGT/d4” and allows one to
obtain the result very close to that of the complete IGT, but
only requiring several-iterations-worth of extra computa-
tional time. This approach can be partly justified by analysis
similar to that including a sphere Vs in Section 3. The
particular optimal RIGT depends on the problem at hand;
however, the satisfactory first guess could be RIGT¼3d that
is further denoted as IGT3 (see simulation results in
Sections 6 and 7).

Currently, ADDA supports three polarizability formula-
tions for rectangular dipoles: CM, CLDR, and IGT approx-
imation, correct in the second order of kd – IGT(SO). The
CM is based on Eqs. (10), (16), and (B7), while CLDR
additionally includes corrections of up to the second order
of kd – Eq. (B17). Both are based on the lattice sums and
are currently limited to a set of aspect ratios tabulated in
[5] (see Appendix B). By contrast, IGT(SO) polarizability is
based on explicit Eqs. (9), (A1) and (A3) and supports any
aspect ratios.

The philosophy of ADDA is to give full control of DDA
formulation to the user. This implies that one can use
definitely wrong combination of polarizability and inter-
action terms (e.g., CM and IGT, respectively). ADDA will
produce a warning but continue simulations in such cases.
When using rectangular dipoles, we recommend using one
of two combinations: CLDR polarizability with point–
dipole interaction or IGT(SO) polarizability with IGT inter-
action. We further denote them as the CLDR and IGT
formulations of the DDA, specified by command line
options “-pol cldr -int poi” and “-pol igt_so -int

igt …” (with optional cutoff range), respectively. We study
their performance in the following sections. Moreover, in
the static limit, considered in Section 4, the CLDR formula-
tion is equivalent to the CM.
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The described code is freely available from the devel-
opment branch of ADDA.1 It has been tested, in particular
by simulations presented in the following sections, and is
suitable for general scattering problems. However, the new
functionality has not yet been fully integrated with all
other ADDA parts. For instance, the rectangular dipoles are
incompatible with calculation of radiation forces and with
scatterers near plane substrate [36]. Moreover, the format
of the shape file does not explicitly specify the dipole
aspect ratios. In the future we plan to remove these
limitations and make the rectangular-dipoles feature avail-
able in the main ADDA package.2 A detailed description of
its usage will then be provided in the ADDA manual.

Finally, we note that ADDA can run on a cluster of
processors with distributed memory, which allows one to
handle very large problems. This feature is fully integrated
with rectangular dipoles. In particular, the most time- and
memory-consuming simulations of the following sections
were run on the compute cluster of the Novosibirsk State
University.
6. Test simulations

First, we perform standard convergence tests with
increasing number of dipoles [10,29]. For that we consider
a sphere and a cube, both with kD0¼8, where D0 is the
diameter or edge size, respectively, and discretized using
from 8 to 128 dipoles per particle dimension along the
x-axis (nx). For a cube both propagation and polarization
direction of the incident wave is along the cube edges. The
rectangular dipoles have aspect ratios 1:1:2, but we also
consider cubic dipoles for comparison. For both dipole
shapes several formulations are considered (CM, CLDR,
IGT, and IGT3). The value of refractive index is taken as
m¼1.4, which is close to the region, where point–dipole
formulations are expected to have singularities due to
spectral spill-out (Section 4). We show relative errors of
extinction efficiency Qext in Fig. 3, other scattering quan-
tities behave similarly (data not shown). For the sphere the
reference value is obtained using the Mie theory [31], for
the cube – using the extrapolation technique based on five
DDA simulations (CLDR with cubic dipoles) with nx
between 128 and 256. The latter resulted in Qext¼4.2927
with estimated uncertainty of 2�10�4. For spheres we
use the volume correction, which ensures that volume of
the dipole set is equal to that of sphere (a default option in
ADDA) [23].

Overall, Fig. 3 demonstrates the convergence of all DDA
formulations with increasing number of dipoles down to
very good accuracies. That is sufficient to verify the
correctness of both theory and implementation; however,
there are a few features worth discussing. First, the
dips in some curves for spheres are artefacts of chosen
representation, which discards the sign of the difference,
i.e., they are related to the function Qext(nx) crossing the
true value at some finite nx (see [10,37] for details).
1 http://code.google.com/p/a-dda/source/browse/branches/
rectangular_dipole.

2 http://code.google.com/p/a-dda/.
Second, rectangular dipoles result in worse accuracy than
cubic ones, which is totally expected for such symmetric
shapes. The goal of this test is to show that rectangular
dipoles are viable for any particle, while the cases, where
rectangular dipoles do provide advantage, are discussed in
Section 7.

The comparative performance of IGT3 and IGT is a bit
trickier to explain. For rectangular dipoles IGT3 converges
to a slightly wrong value, which is similar to the problem
of combining point–dipole Green's tensor with the IGT
polarizability (see Section 3), but is much less pronounced.
By further refining discretization up to nx¼512 (data not
shown), we estimated the residual relative error to be
within 0.05% for both test particles. In principle, this can be
fixed by adjusting the polarizability expression to match
this particular interaction formulation, but we leave it for a
future study. By contrast, for cubic dipoles the difference
between IGT3 and IGT does decrease to zero with dipole
size. Moreover, if this difference is opposite in sign to the
error of the IGT itself, IGT3 may seem more accurate than
IGT, as is the case for the cube.

As a second test, we study the performance of the
iterative solver in terms of number of iterations Niter as a
function of m. We consider a small sphere (kD0¼1) to
relate the results with conclusions of Section 4. For
wavelength-sized and larger particles Niter is in most cases
larger than the following values for the same m, especially
for large |m|. The sphere was discretized with nx¼32 with
either cubic or rectangular (1:1:2) dipoles. The default
iterative solver (quasi-minimal residual) and convergence
threshold (10�5) were used. However, the iterations were
stopped after 3N iterations even if not converged. Thus,
Niter was effectively truncated at this level, which is
9.8�104 and 4.9�104 for cubic and rectangular dipoles,
respectively. Both real and imaginary parts of m were
varied from 0 to 10 in steps of 0.5 with exception of the
imaginary axis, where Re(m)¼0.05 (instead of 0) was used,
and m¼1þ0.001i instead of exactly 1. The results for CLDR
and IGT formulations are shown in Fig. 4. They are almost
identical to the results of CM and IGT3, respectively; thus,
the data for the latter two are not shown.

The convergence of the iterative solver for the CLDR is
significantly slower than that for the IGT even for cubic
dipoles, especially for large real m. However, the most
prominent feature of Fig. 4 is the failure of the CLDR for
rectangular dipoles for most of the considered values of m, in
agreement with analysis of Section 4. The particular applic-
ability domain of CLDR depends on dipole aspect ratios and
computational constrains, but it is definitely inacceptable for
many applications. The overall pattern for the IGT with
rectangular dipoles is very similar to that with cubic dipoles,
Niter is from 1 to 3 times larger for all values of m except that
close to the imaginary axis. We can conclude that IGT
formulation of rectangular dipoles is reliable in the wide
range of refractive indices, while CLDR (or any other point–
dipole one) is generally inferior to the IGT, both in terms of
accuracy and computational speed. Finally, Niter (and Fig. 4)
does depend on the specific iterative solver. However, our
experience with cubic dipoles (data not shown) suggests that
general trends in dependence of Niter onm are the same for all
iterative solvers, at least for those implemented in ADDA [36].

http://code.google.com/p/a-dda/source/browse/branches/rectangular_dipole
http://code.google.com/p/a-dda/source/browse/branches/rectangular_dipole
http://code.google.com/p/a-dda/


Fig. 5. Light scattering pattern for 9�9�0.02 μm3 graphene plate:
(a) reference results obtained by the IGT3 with 2 nm cubic dipoles,
(b) relative errors of four DDA formulations with cubic and rectangular
dipoles (in log scale).
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7. Practical applications

In this section we consider a couple of oblate particles,
relevant to practical applications, for which the use of
rectangular dipoles is expected to be beneficial. Based on
the results of Section 6, we choose IGT3 formulation for
simulations in this section (unless noted otherwise) to
obtain good accuracy and reliability without large compu-
tational overhead due to full integration in the IGT.

The first example is a graphene sheet, inspired by [11],
in particular a rectangular plate with dimensions
9�9�0.02 μm3. We used λ¼650 nm and m¼3þ1.4i
[38]. Standard DDA approach is based on 10 nm cubic
dipoles [11], corresponding to two dipoles per plate thick-
ness. In principle, one dipole per thickness can also be
used, but we do not explore this option, since it is not
supported by ADDA shape generation routines [23]. More-
over, such approach contradicts an accepted notion that
dipole should be much smaller than any characteristic
length of the particle [2] – see also discussion below.
We compared the simulations with 10 nm cubic dipoles
to that with rectangular dipoles of 20�20�10 nm3 and
50�50�10 nm3. To assess the accuracy we used a reference
result obtained with 2 nm cubic dipoles. IGT3 was used for
all these simulations, but we additionally tried CLDR with
10 nm cubic dipoles (for such small dipoles it is almost
equivalent to CM). The resulting light-scattering patterns,
given by the Mueller matrix element S11 in the yz-plane for
incident wave propagating along the z-axis, and their relative
errors are shown in Fig. 5. To describe the accuracy by a
single number we use root-mean-square relative error
(RMSRE) over the angular range [01,901], which we further
denote as η.

First, note the rather unexpected result – even for cubic
dipoles CLDR is much less accurate (η¼9.1%) than IGT3
(0.7%) because all dipoles are boundary ones (see discus-
sion in Section 3). Thus, it is always recommended to use
IGT for very thin particles. Second, using 2:2:1 dipoles
leads to almost the same accuracy (η¼0.6%) but does it 7
times faster (4 times smaller N and 1.4 times smaller Niter).
Here and further we consider only the time of the iterative
solver, since it is a major part of the total DDA simulation
time (except for the smallest problems) but is mostly
independent of the secondary simulation parameters
(e.g., number of scattering angles). Third, using 5:5:1
dipoles leads to a dramatic speed increase (42 times),
but at the expense of lesser accuracy (η¼2.7%). In general,
comparison of simulation speed of two methods is mean-
ingful only when their accuracies are the same, e.g., [39].
However, the standard cubic-dipoles DDA cannot be
accelerated for graphene plate even at expense of accuracy
(dipole size is limited by the plate thickness). Thus, if
moderate errors can be tolerated the acceleration due to
5:5:1 dipoles is relevant. The accuracy deterioration for the
latter is easy to explain by noting that width of the dipole
(50 nm) is significantly larger than λ/10|m|, which is the
“rule-of-thumb” characteristic size over which the electric
field can be assumed constant [2].

This explanation implies that accuracy of simulations with
(very) oblate dipoles should improve with increasing ratio of λ
to particle thickness. In particular, we considered λ¼3 μm
keeping all other parameters the same as above. Then η is
0.2%, 0.8%, and 2.0% for 10�10�10 nm3, 50�50�10 nm3,
and 100�100�10 nm3 dipoles, respectively. The corre-
sponding acceleration due to rectangular dipoles is 42 and
200 times. Note also that decrease of N does not only
accelerate computations, but also decrease memory require-
ments proportionally. In particular, this makes larger particles
or better accuracy achievable on a given hardware. Finally, we
once more emphasize that using CLDR with rectangular
dipoles is completely impractical for such problems, since
such formulation combines slow convergence of the iterative
solver with very bad accuracy (η more than 100%). The latter
can only be improved by using at least 20 dipoles per plate
thickness (data not shown).

The second example is a red blood cell (RBC) – also an
oblate particle, but with all dimensions larger than λ. We
used the shape mode, built into ADDA [36], with diameter
7.65 μm, minimum and maximum thicknesses 0.69 and
2.44 μm, respectively, and diameter at the maximum
thickness 5.46 μm, as has been considered in [39]. The
wavelength in the vacuum is 0.633 μm, which corresponds
to λ¼0.473 μm in the medium (buffered saline). The
relative refractive index of the RBC is 1.045þ8�10�5i,
and its symmetry axis lies in the yz-plane constituting a
301 angle with the z-axis (incident propagation direction).
Same as above, we compute S11 in the yz-plane for
scattering angles up to 901 and use η as an integral
accuracy measure. The latter is calculated against a



Fig. 6. RMS relative error of S11 over the angular range [01,901] versus a
product N �Niter, which determines the simulation time, in a log–log scale
for a typical RBC (see text).
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reference obtained with cubic CLDR using very fine dis-
cretization (1400 dipoles per RBC diameter).

Similar to graphene, we tried cubic and rectangular (2:2:1)
dipoles. However, here the variation of discretization level is
possible in wide ranges for both dipole shapes. Thus, we need
to compare the computational times to reach the same
accuracy. This time depends on many factors, including the
details of Green's tensor integration in the IGT, but the most
general factor is the product N∙Niter, which becomes the
dominant one (simulation time is proportional to it) if Niter

is large enough. Therefore, we varied the number of dipole per
RBC diameter from 150 to 300 for cubic and from 100 to 250
for rectangular dipoles. The resulting dependence of η on
N∙Niter is shown in Fig. 6. First, the value of η is less than 15%
(generally acceptable) even for the coarsest used discretiza-
tions. Second, the whole curves for rectangular dipoles are
almost the same for CLDR and IGT3 formulations, except that
Niter for IGT3 is systematically smaller. Note that satisfactory
performance of CLDR with rectangular dipoles is due to m
being close to 1. Third, the results for rectangular dipoles are
generally comparable to that for cubic dipoles. However, there
is a systematic superiority of rectangular dipoles for finer
discretizations – up to twice better accuracy for the same
computational requirements.

To summarize the above results we note that the
magnitude of variation (derivative) of the electric field
depends on the smaller of the two characteristic scales:
the wavelength (isotropic) and particle dimensions (can be
anisotropic). Thus, when one particle dimension is much
smaller than both λ and another particle dimension, the
derivative of the electric field is strongly anisotropic,
which warrants the use of rectangular dipoles in the
DDA. We have illustrated that by oblate particles, but we
expect similar conclusions to hold for prolate needle-like
particles (e.g., nanorods), for which thickness is much
smaller than λ.

8. Conclusion

This paper is devoted to the use of rectangular lattice of
dipoles in the DDA. We theoretically analyzed two
different approaches, namely the IGT and point–dipole
one (based on lattice-sum polarizability), deriving them
from the volume-integral equation for the electric field.
Although both approaches are viable, we showed that the
expressions for the polarizability and interaction terms
must conform to each other. This resolves the existing
controversy in the literature.

We also studied the spectrum of the interaction matrix
in the static limit and found significant differences
between the two DDA formulations. In the IGT formulation
the spectrum of the interaction matrix is always limited to
the physical bounds of the spectrum of the integral
scattering operator. By contrast, the point–dipole formula-
tions (CM or CLDR) cause the spectrum to extend beyond
these physical bounds. Although this spectral spill-out can
often be neglected for cubic dipoles, its width increases
unboundedly with dipole aspect ratio. Practically, this
implies unphysical resonances for real positive m and
overall deterioration of the simulation accuracy and speed
with increasing absolute value of m. The slowdown is
caused by slower convergence of the iterative solver,
which has been confirmed by simulations. Thus, the
applicability of point–dipole DDA formulations with rec-
tangular dipoles is severely limited to the region of m close
to 1, with specific bounds depending on dipole aspect
ratios and particle size.

We implemented IGT, CM, and CLDR formulations with
rectangular dipoles in the open-source code ADDA to make
it available to other researchers. We tested the correctness
of implementation on a number of simple test cases – all
formulations converge with refining discretization. We
further illustrated the virtues of the IGT formulation with
rectangular dipoles by simulations of light scattering by a
graphene sheet, with thickness much smaller than λ. First,
we found that use of IGT is critical even for cubic dipoles,
since point–dipole (CLDR) formulation applied to two-
dipoles-per-thickness discretization resulted in more than
10 times larger errors. Second, use of IGT with rectangular
dipoles leads to more than 100 times faster simulations
keeping the satisfactory accuracy. The required memory
can be reduced by the same factor allowing one to handle
larger scattering problems with a desktop computer.

We also applied the DDA with rectangular dipoles to a
red blood cell – also an oblate particle, but with thickness
larger than λ. Unfortunately, we noticed only marginal
improvement in comparison with the cubic dipoles. There-
fore, we conclude that use of rectangular dipoles is
expected to be especially beneficial for strongly oblate
and prolate particles, for which the smallest dimension is
much smaller than λ. This class includes many potential
applications related to plate- or needle-like particles, e.g.,
in nanotechnology.

Finally, we stress that the DDA with rectangular dipoles
owes its success to the IGT formulation, which has been
largely underestimated by the DDA community. This formula-
tion is currently implemented only in a single available DDA
code (ADDA) and has been used only in a few papers. This
makes further development and optimization of IGT a relevant
task for future research. It may include optimization of
numerical integration of Green's tensor and developing
approximate expressions based on expansions in orders of
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kd and/or lookup (interpolation) tables. Also, the success of
IGT with rectangular lattice of dipoles justifies the term
“rectangular dipole” (volume element of the IGT), which we
adopted in this paper.
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Appendix A: Self-term expressions for rectangular dipoles

In this appendix we provide the formulae for Li and Mi

in the IGT formulation of the DDA with rectangular
dipoles, which were independently derived (in different
forms) by Tsang et al. [17] and Massa et al. [20]. Since we
assume all dipoles to be the same (d1� d2� d3), we omit
the index i in this appendix for simplicity. Tensor L can be
obtained analytically

Lμν ¼ 2δμνΩμ; ðA1Þ
where δμν is the Kronecker symbol and Ωμ is the solid
angle of rectangular dipole face perpendicular to the μ-
axis as observed from the dipole center (μ, ν are Cartesian
indices):

Ωμ ¼ 4 arcsin ∏
νaμ

dνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2μþd2ν

q
0
B@

1
CA¼ 4 arctan

Vd

d2μD

 !
; ðA2Þ

where Vd¼d1d2d3 is dipole volume, and D¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21þd22þd23

q
– its diagonal.

The integral in the expression for M (Eq. (7)) can be
evaluated in closed form only if the integrand is expanded
in powers of kd (or, equivalently, kD) up to third order,
which leads to

Mμν ¼ δμν
1
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k2βμþ
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ik3Vd
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; ðA3Þ
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The latter is a simplified form of the expression given in
the supplementary data of [21]. Since the main non-trivial
part of M comes from terms of order (kd)2 and due to
historical reasons, we name the corresponding formula-
tion of the DDA self-term (polarizability) “second-order
IGT” IGT(SO) to distinguish it from precise evaluation of
Eq. (7), which was done in [8]. However the difference
between these two polarizability formulations is O(k4dVd),
which is minor (especially for strongly elongated dipoles,
when Vd5d3) since kd must be 51 for the assumption of
small variation of electric field inside the dipole to be valid.

It is instructive to analyze the behavior of M and L
when the dipole is strongly elongated. In particular, let us
analyze the case of plate-like and needle-like dipoles.
Direct implications of Eqs. (A1) and (A2) are

d15d2; d3 ) L11 ¼ 4π; L22 ¼ L33 ¼ 0; ðA5Þ

d1; d25d3 ) L11 ¼ 8 arctanðd2=d1Þ;
L22 ¼ 8 arctanðd1=d2Þ; L33 ¼ 0: ðA6Þ
In particular, Lμμ is always in the range [0,4π]. By contrast,
Eqs. (A3) and (A4) imply

M¼O k2
Vd

d
log

D
D�d

� �� �
; ðA7Þ

which is o((kd)2) in the limit of one dipole dimension
much smaller than the other. As discussed above, kd must
be small in all DDA simulations, so the M term can be
neglected altogether for any extreme-elongation cases.

Appendix B: Lattice sums

To evaluate G
st;0
ii in Eq. (16) we perform derivations

similar to that in [5]. First, let us define the reciprocal
lattice q¼2π(n1/d1,n2/d2,n3/d3), and its normalized variant
Q ¼ q

ffiffiffiffiffiffi
Vd

3
p

=ð2πÞ, where n¼{n1,n2,n3} is an integer vector.
The regularized static Green's tensor [35] (with extracted
singularity) is defined as

G0stðRÞ ¼
0; RAV 0;

G
stðRÞ; otherwise;

(
ðB1Þ

where V0 is the infinitesimal spherical exclusion domain
(implying the limit V0-0). Then its Fourier transform is
given by

F G0st
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where t¼cos(θ), θ is the angle between κ and R, φ is the
azimuthal angle in plane perpendicular to κ, u¼κR. The
integral over φ is calculated by expanding R into compo-
nents parallel and perpendicular to κ: R¼ tκ=κþτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�t2

p
,

where τ(φ) is the unit vector perpendicular to k, and using
that the averaged tensor τ̂τ̂ is proportional to the projector
on the perpendicular plane:Z 2π

0
dφ τ̂τ̂¼ π I� κ̂κ̂

κ2

� �
: ðB3Þ

The same result (Eq. (B2)) can also be obtained starting
with the Fourier transform of 1/R [35]:

F½1=R�ðκÞ ¼ 4π=κ2; ðB4Þ
and using equivalence of ∇̂∇̂-� κ̂κ̂ under the Fourier
transform. However, this requires rigorous consideration
of integration–differentiation interchange, which can be
done only using the generalized functions. In particular,
the latter would lead to appearance of the term I in the
final part of Eq. (B2).
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Next, we apply Poisson summation formula, e.g., [40],
together with Eq. (B1) and obtain:X
ja i

G
st;0
ij ¼

X
n

G0stðfn1d1;n2d2;n3d3gÞ

¼ 1
Vd

X
n

F½G0st�ðqÞ ¼ 4π
Vd

δμνR0ðμÞ
� �

; ðB5Þ

R0ðμÞ ¼
X
n

1
3
�
q2μ
q2

 !
¼
X
n

n2
μ

n2�
X
n

Q2
μ

Q2 ; ðB6Þ

where the right-hand side of Eq. (B5) defines the tensor
element-wise, and the value of the summand at the origin
of the reciprocal lattice is taken direction-averaged, i.e.,
q2μ=q

2 -
q ¼ 0

1=3. The latter corresponds to the spherical outer

boundary in evaluation of the original conditionally con-
vergent sum (Section 3). Alternatively, the origin can be
excluded from the summation, since it does not change the
final result (both in Eq. (B6) and in the following sums).
The sum R0(μ) is exactly the same as the one derived in [5]
by summing vector potentials instead of electric fields. We
do not actually evaluate those lattice sums although
efficient algorithms are available [27]. Instead we refer to
[5], where the values of R0(μ) are calculated for a number
of dipole aspect ratios – one is unity, and the other two are
chosen from a set {1,1.5,2,3}. We provide a subset of those
values in Table B1, only for aspect ratios that we used in
simulations.

To finalize the static case we combine Eqs. (16) and (B5)
into

Vd½G
st;0
ii �μν ¼ �4πδμν 1=3þR0ðμÞ

� �
; ðB7Þ

and consider the limit of strongly elongated dipoles. For
the latter we notice thatX
ja i

G
st;0
ij ¼O ðminðd1; d2;d3ÞÞ�3

� �
; ðB8Þ

i.e., the magnitude of the sum is determined by the lattice
points closest to the origin (see also the discussion in
Section 3). Therefore, R0(μ) increases without bounds with
increasing dipole elongation. More specifically, if one of
the dipole dimensions (dμ) is much larger than the other,
then the corresponding summation index (nμ) can be set
to 0 (neglecting non-zero values of nμ). Thus, the sum in
Eq. (B8) reduces to 2D or 1D one. For instance,

d15d2; d3 ) R0ð1Þ ¼
Vd

4π

X
na0

2
ðnd1Þ3

¼ ζð3Þ
π

d2d3
d21

;

R0ð2Þ ¼ R0ð3Þ ¼ �R0ð1Þ
2

; ðB9Þ
Table B1
Values of R0(μ) for dipole aspect ratios used in this paper (calculated in
[5]).

d1 d2 d3 R0(1) R0(2) R0(3)

1 1 1 0 0 0
1 1 1.5 0.20426 0.20426 �0.40851
1 1 2 0.38545 0.38545 �0.77090
1 1 3 0.74498 0.74498 �1.48995
d1 ¼ d25d3 ) R0ð3Þ ¼ �Vd

4π

X
fn1 ;n2ga f0;0g

1

d31ðn2
1þn2

2Þ

¼ �ζð3=2Þβð3=2Þ
π

d3
d1

;

R0ð1Þ ¼ R0ð2Þ ¼ �R0ð3Þ
2

; ðB10Þ

where ζ and β are the Riemann zeta and Dirichlet beta
functions, respectively [40]. The 2D sums in Eq. (B10) for
general case of d1ad2 are also discussed in [40].

Gutkowicz-Krusin and Draine [5] also derived the
dynamic corrections to the above formula, which consti-
tutes the CLDR formulation for general rectangular lattice.
Here, we present their main formulae for completeness.
First, define additional lattice sums

R1 ¼
X
n

1
n2�

X
n

1

Q2 ¼
X
μ

R2ðμÞ ¼
X
μ;ν

R3ðμ;νÞ; ðB11Þ

R2ðμÞ ¼
X
n

n2
μ

n4�
X
n

Q2
μ

Q4 ¼
X
ν

R3ðμ;νÞ; ðB12Þ

R3ðμ;νÞ ¼
X
n

n2
μn

2
ν

n6 �
X
n

Q2
μQ

2
ν

Q6 ; ðB13Þ

which are all expressed in terms of six independent
components of R3. These sums are tabulated in [5] for
the same dipole aspect ratios as R0 (see above). In
particular, they all vanish for cubic lattice. The general
expression for the self-term for a plane wave propagating
in the direction, given by unit vector a, is

Vd½G
0
ii�μν ¼ Vd½G

st;0
ii �μν�

1
π
k2V2=3

d δμνNμþm2aμaνKμν
� �

þ2
3
ik3VdδμνþO ðkdÞ4

� �
; ðB14Þ

where

Nμ ¼ c1þm2c2 1�3a2μ
� �

�m2c3a2μ�R1� m2�1
� �

R2 μ
� �

�8m2a2μR3ðμ;μÞþ4m2
X
ν

a2νR3ðμ;νÞ; ðB15Þ

Kμν ¼ c3þR1�2R2 μ
� ��2R2 νð Þþ8R3ðμ;νÞþc4; ðB16Þ

where c1¼�5.9424219, c2¼0.5178819, and c3¼4.0069747
are the LDR constants [4] and c4 is an arbitrary constant.
One can, in principle, associate VdG

st;0
ii with �Li and the

remaining terms in Eq. (B14) withMi (cf. Eq. (9)). However,
this would only add ambiguity since Li and Mi have
specific (IGT-related) definitions that are generally incom-
patible with point–dipole formulation.

If one sets c4¼�c3 then G
0
ii is diagonal for a cubic

lattice (for any a) [5] – this is an accepted definition of
cubic CLDR in current DDA implementations [19,23]. We
extend this setting to rectangular lattice, which justifies
the use of the same name. Unfortunately, G

0
ii is generally

non-diagonal for rectangular lattice, which is incompatible
with the current data structure inside ADDA that supports
only diagonal polarizabilities. Therefore, we additionally
discard non-diagonal values and obtain

½G0;diag
ii �μν ¼ δμν½G0

ii�μν

c4 ¼ � c3

: ðB17Þ
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Note that the latter approximation is exact for propaga-
tion vectors along any axis (then matrix aμaν is diagonal),
which includes all simulations in this paper.

As a side note we propose a different way to diagona-
lize G

0
ii , that is by averaging over a. Then 〈aμaν〉a¼δμν/3 and

no limitations remain on the choice of c4. Thus, we choose
the most obvious value c4¼0 and obtain:

Vd½G
0;av
ii �μν ¼ Vd ½G0

ii�μν

c4 ¼ 0

� �
a

¼ δμν �4π
1
3
þR0ðμÞ

� �
�1
π
k2V2=3

d c1þ
m2

3
�1

� �
R1

��

� m2�1
� �

R2 μ
� ��þ2

3
ik3Vd

�
: ðB18Þ

The physical sense of such averaging stems from the
fact that the field inside (even large) finite scatterer is not
expected to be that of a single plane wave, but rather can
be approximated by a collection of plane waves with
different directions (cf. a geometric-optics viewpoint).
For cubic lattice G

0;av
ii is very similar to that of IGT (cf.

Eq. (A3)); in particular, it does not depend on m. Note also
that it differs from direction-averaged LDR [4] due to
inaccuracies in the original LDR derivation. For rectangular
lattice the dependence of G

0;av
ii on m is also relatively weak

– the trace of the tensor is independent of m.
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