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Abstract: We develop the time-domain discrete dipole approximation 
(DDA), describing the temporal evolution of electric field in plasmonic 
nanostructures. The main equation is obtained by taking the inverse Fourier 
transform of the Taylor expansion of the frequency-domain DDA in terms 
of frequency deviation from the central frequency. Thus we assume that 
incident wavefronts of different frequencies accumulate relatively small 
phase difference when passing the particle. This assumption is always valid 
for nanoparticles much smaller than the wavelength. Being the time-domain 
method, the proposed approach also requires an analytic frequency 
dependence of electric permittivity, e.g. the Drude model. We present 
numerical results of application of the time-domain DDA to silver 
nanosphere, rod, and disk, which agree well with that obtained with its 
frequency-domain counterpart and the finite-difference time-domain 
method. Moreover, the time-domain DDA is the fastest of the three 
methods for incident pulses of several-femtoseconds width. Thus, it can 
effectively be applied for modeling the temporal responses of plasmonic 
nanostructures. 

©2015 Optical Society of America 
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1. Introduction 

Over the past decade, nonlinear plasmonic nanostructures have attracted great interest in the 
community of nanophotonics [1,2]. Such systems include metal nanostructures with ultrafast 
nonlinearity [3,4] and spaser-based nanolasers [5], loss-compensated metamaterials [6], and 
surface plasmon polariton amplifiers [7,8] in which active material embedded in the 
nanostructure exhibits saturation behavior. One needs to account for the temporal evolution of 
the system in response to external field for the study of these problems. Frequency-domain 
methods, such as the discrete dipole approximation [9,10], frequency-domain finite element 
method (FEM) [11], boundary integral method [12] and many others can account for the 
temporal response only after extensive calculation of the responses of the systems over the 
whole frequency range under consideration (see e. g [13,14].). Such circumstance becomes 
more limiting when one needs to account for the nonlinearity of nanostructure taking part in 
the interactions with light whose intensity depends on time. For solving these problems, time-
domain methods are evidently superior to the frequency-domain methods. As a popular time-
domain method, the finite-difference time-domain (FDTD) method [15] is widely applied for 
numerical simulations of temporal responses of plasmonic nanostructures. 

The discrete-dipole approximation (DDA) has the advantages of small memory 
requirement for calculation and its simplicity compared to the other methods (see e. g [13].) 
such as FDTD, FEM and others, leading to wide applications for the investigation of 
electromagnetic responses of nanostructures. Nevertheless, DDA cannot directly be applied 
for studying time-evolution problems, since it is a frequency-domain method. Recently 
reported DDA in time-domain [13,14,16] performs numerical calculation in frequency-
domain, and the temporal response of the system is calculated by the inverse Fourier or 
Laplace transform. By using such indirect method, dynamically accounting for the temporal 
evolution of nonlinear or intensity-dependent response is impossible. 

In this paper we develop a direct time-domain DDA (TDDDA) which enables evaluating 
the temporal evolution of plasmonic nanostructures. The main equation for the TDDDA is 
obtained by taking the inverse Fourier transform of the Taylor expansion of the frequency-
domain DDA in terms of frequency deviation from the central frequency. The method can be 
considered an intermediate between the FDTD and the frequency-domain DDA. In particuar, 
it solves for the oscillations amplitudes of dipole moments but does it through the time-
domain differential equation. Due to the latter it requires an analytic frequency dependence of 
electric permittivity. We obtain the differential equation for dipole moments from its 
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frequency-domain expression for complete description of temporal evolution of local field. 
We compare the simulation results for silver nanoparticles with that of the frequency-domain 
DDA and of the FDTD to demonstrate the correctness of the proposed TDDDA. Moreover, 
we discuss the numerical efficiency of the latter and its possible extension to simulation of 
nonlinear processes. 

2. Time-domain DDA 

The idea for obtaining the equation describing the temporal evolution of local field is as 
follows. First, we obtain a modified DDA equation in terms of frequency deviation from 
central frequency. The central frequency can be, for example, of a pulse incident onto the 
medium containing metal nanoparticles. Taking the inverse Fourier transform, we can get the 
TDDDA equation containing the time derivatives. 

We begin with DDA equation describing distribution of local field (also denoted as 
exciting field) in inhomogeneus media [9,10,17]: 

 ,m m mn n
n m≠

+in G pΕ = Ε  (1) 

where Em and in
mE  are the discretized local and incident fields, respectively, pn = αnEn is the 

dipole moment of n-th dipole, and αn = (3v/4π)(εn − εh)/(εn + 2εh) is the polarizability, where v 
is the volume of the dipole, εn = εn(ω) is the dielectric function of material at the position of n-
th dipole, and εh is the permittivity of host material. We chose the simplest formulation 
(Claussius–Mossotti) for polarizability [10], since we are aiming at smaller nanoparticles, for 
which difference between polarizability formulations is negligibly small. Gmn in Eq. (1) is 
given by [10] 

 2
2

exp(i ) i 1
ˆ ˆ ˆ ˆ( ) ( 3 ) ,mn mn

mn mn mn mn mn
mn mn

kR kR
k r r r r

R R

 −
= − ⊗ + − ⊗ 

 
G 1 1  (2) 

where Rmn = |rm – rn|, ˆ ( )mn m n mnr R= −r r , and k = ω/c0, where c0 is the speed of light in 
vacuum. 

Let us expand Eq. (2) into the Taylor series: 

 
2

2
0 0 02

0 0

1
( ) ( ) ( ) ( ) ,

2
mn mn

mn mn
k k k k

k k k k k k
k k= =

∂ ∂
= + − + − +

∂ ∂
G G

G G   (3) 

where 1 2
0 h 0/k k cωε− = Δ , ∆ω = ω – ω0, and ω0 is the central angular frequency. We consider 

the incident field in Eq. (1) as a plane wave given by 

 in in ( ) exp(i ),m mkrω ⊥=E E  (4) 

where Ein(ω) is the amplitude and rm⊥ = (k·rm)/k is the projection of rm onto the direction of 
wavevector k. The above incident field can be expanded as follows: 

 in in 2 2
0 0 0

1
( ) exp(i ) 1 i( ) ( ) .

2m m m mk r k k r k k rω ⊥ ⊥ ⊥
 = + − − − +  

E E   (5) 

To make the numerical scheme practical we have to truncate the Taylor expansions in 
Eqs. (3) and (5) down to a few terms. This results in the main limitation of the proposed 
TDDDA – (k – k0)R << 1, where R is the characteristic particle size, assuming that the origin 
of the reference frame in Eq. (5) is placed inside the particle. In other words, we assume that 
incident wavefronts of different frequencies accumulate relatively small phase difference 
when passing the particle. In particular, this approximation is reasonable for broadband 
response of nanoparticles much smaller than the wavelength, which is the main motivation of 
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this paper. The applicability domain of the method in terms of R somewhat increases with the 
number of accounted Taylor term; still, the case of (k – k0)R ~1 cannot be efficiently handled. 
Further on, we consider only the second-order approximation, under which Eq. (1) can be 
rewritten as 

 ( )
1 2

in 2 2 ( 0 ) (1) ( 2 ) 2h h

0 2

0 0

( ) exp(i ) 1 i ,
2

m m m m mn mn mn n

n m

k r r r
c c

ε ε
ω ω ω ω ω

⊥ ⊥ ⊥
≠

= + Δ − Δ + + Δ + Δ
 
 
 

E E G G G p  (6) 

where 
0

(0) ,mn mn k k=
=G G  

 [ ]
1 2

(1) 0h
0 0 0

0

exp(i )
ˆ ˆ ˆ ˆ(2 i )( ) ( 3 ) ,mn

mn mn mn mn mn mn
mn

k R
k k R r r k r r

c R

ε
= + − ⊗ − − ⊗G 1 1  (7) 

 ( 2 ) 2 20h

0 0 0 02

0

exp(i )
ˆ ˆ( 4i 2)( ) (i 1)(i 1) .

2

mn

mn mn mn mn mn mn mn

mn

k R
k R k R r r k R k R

Rc

ε
= − + + − ⊗ − + +  G 1  (8) 

To validate the applicability of the second-order approximation in a quantitative manner, 
we further evaluate their magnitudes. For the Green’s tesor it is sufficient to compare the 
magnitudes of the following scalar function which constitutes the tensor: 

 2 2exp(i )
( ) (i 1)( 3 )

kR
g k s R kR s

R
δ δ− = − + − −   (9) 

with its first- and second-order approximations: 

 [ ]
0

1 2
0h

1 0 0 0
0
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(2 i )( ) ( 3 ) ,

k k
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g g k k R s k s

c R

ε δ δ ω
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 2 2 20h
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2
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In Eqs. (9)–(11), δ = 1 and 0 for diagonal and nondiagonal elements, respectively. For the 
incident field we compare the position-dependent part in Eq. (5) f = exp(ikr⊥) with its 
approximations 

 
1 2
h

1 0
0

exp(i ) 1 i ,mf k r r
с

ε ω⊥ ⊥

 
= + Δ 

 
 (12) 

 
1 2

2 2h h
2 0 2

0 0

exp(i ) 1 i .
2m mf k r r r

с c

ε εω ω⊥ ⊥ ⊥

 
= + Δ − Δ 

 
 (13) 

 

Fig. 1. Validation the second-order approximation: absolute values of g, g1, and g2 (a) and real 
(b) and imaginary (c) parts of f, f1, and f2 versus the wavelength for the values of parameters R 
= r⊥ = 50 nm, δ = 1, s = 0.1, and λ0 = 2πс/ω0 = 400 nm. 
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Figure 1(a) presents the comparison of absolute values of g, g1, and g2 as the functions of 
wavelength λ for R = 50 nm, δ = 1, s = 0.1, and λ0 = 2πс0/ω0 = 400 nm, as an example. 
Figures 1(b) and 1(c) presents similar results for real and imaginary parts of f, f1, and f2 for r⊥ 
= 50 nm. Those results confirm that the second approximations perfectly agree with the 
corresponding original functions (maximum relative errors are 2.5% for g and 0.4% for f) for 
the considered wavelength ranges and sizes of nanoparticles. 

To obtain time-domain equation for the local field, we take the inverse Fourier transform 
of both sides in Eq. (5), when the frequency difference is transformed to the time derivatives: 
∆ω → i∂/∂t and ∆ω2 → −∂2/∂t2. As a result, we obtain the DDA equation describing the 
temporal evolution of amplitude of local field Am(t): 

 
1 2 2 2

2 in ( 0 ) (1) ( 2 )h h

02 2 2

0 0

1 exp(i ) +i ,
2

m m m m mn mn mn n

n m

r r k r
c t tc t t

ε ε
⊥ ⊥ ⊥

≠

∂ ∂ ∂ ∂
= − + + −

∂ ∂∂ ∂

   
   

  
A A G G G q  (14) 

where Ain, Am, and qm are the amplitudes defined by Ein(t) = Ain(t)exp(−iω0t), Em(t) = 
Am(t)exp(−iω0t), and pn(t) = qn(t)exp(−iω0t), respectively. 

3. Temporal evolution of dipole moments 

Using Eq. (14), we can directly obtain the temporal evolution of optical response of metal 
nanostructures, unlike the indirect method presented in [13,14]. However, the drawback of 
operating in time domain is the need to relate the time dependences of qn and An, which 
requires analytic expression for εn(ω), analogous to the FDTD [15]. In this paper we consider 
the extended Drude model for the dielectric function of metal: 

 
2
p

2
( ) ,

in

ω
ε ω ε

ω γω∞= −
+

 (15) 

where ε∞ is the dielectric function for infinite frequency, ωp is the plasma frequency, and γ is 
the electron collision frequency in metal. In principle, more complicated expressions for εn(ω) 
can also be incorporated, but we leave it for a future research. For convenience, we write the 
dipole moment as pn(ω) = pn0(ω) + pn1(ω), where 

 h
0 0

h

3
( ) ( ) ( ),

4 2n n n

v ε εω α ω ω
π ε ε

∞
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−
= =
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p E E  (16) 

 1 2 2
p h
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wv ωω
π ω ωγ ω ε ε∞
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+ − +

E
p  (17) 

and 2 2
h p h3 ( 2 )w ε ω ε ε∞= + . Equation (17) can be rewritten as 

 
2

2
1

h

3
i ( ) ( ).

2 4
p

n n

v
w

ω
ω ωγ ω ω

ε ε π∞

 
+ − = −  + 

p E  (18) 

Taking the inverse Fourier transform of both sides in the Eq. (18), we obtain the differential 
equation for the amplitude qn1(t), defined by pn1(t) = qn1(t)exp(−iω0t): 

 1 1 1 ,n n n nc b a+ + =q q q A   (19) 

where a = 3wv/(4π), 2 2
p h 0 0/ ( 2 ) ib ω ε ε γω ω∞= + − − , and c = γ – 2iω0. 

Considering pn(t) = pn0(t) + pn1(t) = [α0An(t) + qn1(t)]exp(−iω0t) and Eq. (14) we obtain the 
final equation for the TDDDA: 
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Equations (19) and (20) are the central result of this paper. Solving them simultaneously, we 
can obtain both qn1(t) and An(t) inside the nanoparticle. If required, Eq. (20) can further be 
used to evaluate evolution of the electric field in the vicinity of the nanoparticle as well – in 
full analogy with the frequency-domain DDA [10]. However, we do not currently pursue this 
opportunity. 

4. Difference equation for the time-domain DDA 

For the numerical implementation of the TDDDA, we apply the implicit difference scheme 
for Eqs. (19) and (20). From Eq. (19) we obtain 

 
2

, 1, 1 1, 2
1, 2

(2 )
,

1
n N n N n N

n N

a t c t

c t b t
− −Δ + + Δ −

=
+ Δ + Δ

A q q
q  (21) 

where qn1,N = qn1(N∆t). Its first and the second derivatives are given by 
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respectively. Substituting Eqs. (21)–(23) into Eq. (20), we obtain 
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where l = 1 + с∆t + b∆t2. Using Eqs. (24) and (21) alternatingly we can numerically calculate 
the evolution of local field. 

The enhanced field intensity enh
mE , also denoted as total internal field [10], is given by the 

product in the frequency domain: enh ( ) ( )m mfω ω=E E , where f = 3εh/(εm + 2εh) is the field 
enhancement factor. From the extended Drude model (9) for the dielectric function of metal, 
we have 

 
2

enh 0
2 2

p h

( i )
( ) ( ),

i ( 2 )m m

f ω ωγω ω
ω ωγ ω ε ε∞

+
=

+ − +
E E  (25) 

where f = 3εh/(ε∞ + 2εh). Taking the inverse Fourier transform and through the derivation 
similar to the case of Eq. (19), we obtain the differential equation for the amplitude of 
enhanced field ( )enh

m tA  given by enh enh
0( ) ( ) exp( i )m mt t tω= −A E : 

 enh enh enh
0 ( ),m m m m m mc b f c h+ + = + −A A A A A A     (26) 
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where b and c are the same as in Eq. (19) and 2
0 0ih ω γω= + . Applying the implicit finite-

difference method, we obtain the formula for numerical calculation of enh
mA : 

 ( ) ( ) ( )enh 2 enh enh0

, , 0 , 1 , 1 0 , 2 , 2

2 1
1 .

m N m N m N m N m N m N

f c t
c t h t f f

l l l
− − − −

+ Δ
= + Δ − Δ − − + −A A A A A A  (27) 

5. Numerical results and discussions 

We perform the numerical simulation for the temporal response of silver nanoparticles 
illuminated by a pulse with planar wavefront. The result is compared with preceding 
approaches: the FDTD, the Mie theory, and the frequency-domain DDA. We have used the 
FFT for both time- and frequency-domain DDA calculations in order to reduce the calculation 
time [18]. The solution of the linear system has been performed by using stabilized 
biconjugate gradient method. All the numerical simulations presented in the paper have been 
performed for cubic grid with size of ∆x = 2 nm. 

Figure 2 shows the temporal evolution of enhanced field in silver nanosphere with a 
diameter of 70 nm surrounded by air, in comparison with results of the FDTD. The Drude 
parameters has been taken to be ε∞ = 5.9809, ωp = 14.624 fs−1, and γ = 0.3333 fs−1 which are 
obtained by fitting the dielectric function of silver [19] in the wavelength range from 330 to 
500 nm. The amplitude Aenh is calculated by Eqs. (21), (24), and (27) with the time step of 0.2 
fs. This time step is much larger than that for the FDTD because the TDDDA deals only with 
the envelope or amplitude of the field. The amplitude of incident Gaussian pulse is Ain(t) = ex 
exp(−[(t − t0)/τ]

2), where ex is the unit vector along the x-axis, We considered parameter 
values t0 = 5 fs and τ = 1.6 fs, leading to the pulse duration of 1.88 fs. The central wavelength 
of incident pulse is λ0 = 390 nm. In the FDTD calculation, the total domain is 81 × 81 × 81, 
PML thickness is 5 grid elements. The calculation time step is ∆t = ∆x/(2c) = 3.3 × 10−3 fs, 
which is 60 times smaller than that for the TDDDA. 

 

Fig. 2. Temporal evolution of enhanced field in Ag nanosphere with a diameter 70 nm 
surrounded by air. Grid size is 2 nm. The central wavelength and the duration of incident pulse 
are 390 nm and 1.88 fs, respectively. Figure 2(a) presents the x-component of real part of 
enhanced field calculated by using TDDDA in comparison with the result of FDTD at the 
central position of the nanosphere. Figure 2(b) illustrates the amplitudes of enhanced field, 
averaged over the space occupied by the nanosphere, for TDDDA and FDTD. 

It is improtant to note that the DDA operates with complex-valued fields and amplitudes 
(including all those mentioned above), implying that the actual physical field is the real part 
of the computed one. By contrast, the FDTD operates directly with real-valued fields. In 
particular the incident field in the FDTD is given as Re(Ein) = Ain(t)cos(ω0t). To match the 
two methods we used two options. First, Re(Eenh) computed by the TDDDA is exactly the 
physical field, so its x-component at the center of nanosphere is compared with that of the 
FDTD in Fig. 2(a). Second, we computed the envelope amplitude with the FDTD. For that we 
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repeated the FDTD calculation with incident field Im(Ein) = Ain(t)sin(ω0t), which resulted in 
the computed field equal to Im(Eenh). Then, we used a trivial relation 

 
2 2enh enh enhRe( ) Im( ) ,= +A E E  (28) 

where ||.|| denotes the Euclidian norm of the vector. In Fig. 2(b) we compare ||Aenh|| averaged 
over the volume of nanosphere between the TDDDA and the FDTD. Overall, the results in 
Fig. 2 show good agreement between the methods and thus reveal the validity of the proposed 
TDDDA. 

 

Fig. 3. Extinction spectra for the same nanosphere as in in Fig. 2 calculated from the data 
obtained by the TDDDA, in comparison with that directly computed with the Mie theory and 
the frequency-domain DDA. 

To further validate our method in the frequency domain, we present in Fig. 3 the 
extinction spectra for the nanosphere shown in Fig. 2, in comparison with the result of Mie 
theory and the conventional frequency-domain DDA. The latter implementation has been 
validated by comparison with the ADDA code [20] for several frequencies. The extinction 
efficiency Qext has been determined in the TDDDA through the intermediate calculation of 
frequency-domain local fields. The plasmon resonance wavelength of about 385 nm is nearly 
the same for the three methods, however, the maximum value of Qext calculated with both 
variants of the DDA is about 10% smaller than that of the Mie theory. This difference, as well 
as discrepancies at larger wavelengths, are due to relatively coarse discretization of the 
nanosphere [21]. We stress, however, that the results of time- and frequency-domain DDA 
agree perfectly. The maximum relative difference is 2.5%, but it decreases rapidly when 
approaching the central wavelength. The latter is explained by the fact that the only source of 
this difference is the truncation of Taylor expansions (3) and (5). The same dependence of 
differences on k – k0 is expected to apply to any quantity, including near- and internal fields. 
While we have not performed point-by-point comparison of the latter in the frequency-
domain, it should be accurate on average, since both Qext (Fig. 3) and time-domain fields (Fig. 
2) can be expressed in terms of the internal fields. 

Let us further compare the numerical performance of the TDDDA with that of the FDTD 
and the DDA, taking the results shown in Figs. 2 and 3 as examples. The TDDDA required 9 
iterations of the iterative solver on average for each time step to reach the relative error of less 
than 10−5. Since the total simulation domain has the size of M = 353 and the number of time 
steps is 100, the total computational complexity (in flops) is the order of 100 × 9 × MlogM ≈4 
× 108. By contrast, the frequency-domain DDA required about 160 iterations on average for 
the same error threshold, and 50 different frequencies were considered, leading to the 
computational complexity of 50 × 160 × MlogM ≈4 × 109, which is about 10 times larger than 
that of the TDDDA. The FDTD required calculation time about 5 times longer than that of the 
TDDDA, mainly due to 60-times smaller time step. The only drawback of the TDDDA in this 
case is relatively large memory required for the time-domain fields, which are further 
processed into frequency-domain quantities. However, this drawback is not relevant when 
only the temporal responses of nanostructures is computed. In the latter case the TDDDA is 
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shown to be superior to the other two methods. The relative acceleration of the TDDDA in 
comparison with the FDTD may become more significant for simulations over longer time 
interval, e.g., picoseconds, since the required number of time steps in the TDDDA for 
accurate description of the envelope is fairly independent of its width. While the frequency-
domain DDA is probably more practical for simulation of linear response to long pulses, it 
can hardly be applied for nonlinear simulations (see below). 

As examples of application of the TDDDA to nonspherical particles, we consider silver 
nanorod and nanodisk in Fig. 4. The nanorod has a diameter of 40 nm and a length of 70 nm 
and is embedded in silica glass. The incident wave propagates along the direction 
perpendicular to the long axis of the rod with polarization parallel to this axis. We set λ0 = 680 
nm, the pulse duration 4.71 fs, ∆t = 0.40 fs, and permittivity of silica εh = 2.1229. The disk 
has a diameter of 70 nm and a thickness of 42 nm and is also embedded in silica. Both 
propagation and polarization directions of incident wave are perpendicular to the symmetry 
axis of the disk. In this case λ0 = 550 nm, the pulse duration is 4.12 fs, ∆t = 0.35 fs, and εh = 
2.1414 corresponding to this value of λ0. In both cases we have used the extended Drude 
model for the dielectric function of silver with parameters ε∞ = 4.3378, ωp = 13.385 fs−1, and γ 
= 0.1264 fs−1, obtained by fitting the data presented in [19] in the wavelength range from 300 
to 900 nm. In particular, the computed extinction spectra agree well with that of frequency-
domain DDA (maximum relative differences are less than 8%, but much smaller near the 
central wavelength). 

 

Fig. 4. TDDDA simulations of time- and frequency-domain responses of silver nanorod with a 
diameter of 40 nm and a length of 70 nm (a, b) and nanodisk with a diameter of 70 nm and a 
thickness of 42 nm (c, d), embedded in silica glass. The time-domain response (a, c) is given in 
terms of the space-averaged amplitude of enhanced field in comparison with the incident one. 
The frequency-domain response (c, d) is given in terms of extinction spectra in comparison 
with the direct DDA simulations. 

Being a single-pass method the TDDDA proposed in this paper has the potential for the 
study of temporal behaviors of plasmonic systems with nonlinear responses. One example is 
ultrafast nonlinear response of metal nanostructures illuminated by laser pulses shorter than 
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around 30 fs, which cannot be solved without considering the dispersion of field enhancement 
factor [22]. Spasers or plasmonic nanosystems with saturable gain also require the numerical 
calculation of temporal evolution of the system. Even for the steady state operation, 
frequency-domain methods can provide accurate result only after time-consuming iterative 
self-consistent calculations [23,24]. The nonlinearity can be incorporated through the 
following equation [4,23] 

 
(3)

2enh

ep ee ep ee

d
d ( ) exp ,

d

t
n n n

n

t t
t t

t

ε ε χ
τ τ τ τ−∞

 ′Δ Δ −′ ′= − +  
 

 A  (29) 

where ∆εn is the nonlinear increment of dielectric function (to be added to the linear part), 
(3)
nχ  is the degenerate third-order nonlinear susceptibility, τee and τep are the electron–electron 

and electron–photon response times which have the magnitudes of the order of 0.1 and 1 ps, 
respectively. Equation (29) is a reasonable approximation for moderate laser power, i.e. when 
one needs to account only for the lowest-order nonlinear susceptibility [4]. Moreover, similar 
nonlinear modification of dielectric function was used in the framework of the frequency-
domain DDA [25]. Unfortunately, such extension incurs significant technical complexity, as 
the whole formulation need to be modified starting from Eq. (15). Therefore, we leave it for a 
future research. 

Although we have considered only plasmonic nanoparticles, one can apply the TDDDA 
also for dielectric or semiconductor ones by using the differential equation for dipole moment 
obtained from the Lorentz model, describing the dispersion of dielectric function of those 
materials, as in the FDTD. Moreover, the TDDDA can be extented to anisotropic and/or 
magnetodielectric scatterers with the same additional complexity as that for the frequency-
domain and previous implementations of the time-domain DDA [10,14]. In particular, the 
magnetodielectric case requires one to double the number of equations. The only nontrivial 
additional component is then the cross-term Green’s tensor (between the electric and 
magnetic) parts, which need to be expanded in Taylor series, similar to Eq. (4). 

6. Conclusion 

We have proposed the TDDDA, directly describing the temporal evolution of electric field in 
plasmonic nanostructures (a single-pass approach). The main equation is obtained by taking 
the inverse Fourier transform of the Taylor expansion of the frequency-domain DDA in terms 
of frequency deviation from the central frequency. The differential equation for dipole 
moments is obtained from its frequency-domain expression for complete description of 
temporal evolution of local field. Compared to the frequency-domain DDA, the TDDDA has 
only two limitations. First, it requires an analytic frequency dependence of permittivity, e.g. 
the Drude model (similar to the FDTD). Second, the incident wavefronts of different 
frequencies should accumulate relatively small phase difference when passing the particle. In 
particular, the latter condition is always satisfied for nanoparticles much smaller than the 
wavelength. The results obtained with the TDDDA agree well with its frequency-domain 
counterpart and with the FDTD, taking silver nanoparticles as examples. Moreover, the 
TDDDA is the fastest of the three methods for incident pulses of several-femtoseconds width. 
Thus, it can be effectively applied for modeling the temporal responses and optimizing the 
structural and material parameters of plasmonic nanostructures. Also, it can potentially be 
extended to simulate ultrafast nonlinear processes in nanostructures. 
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