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a b s t r a c t 

Our recent tutorial referred to in the title has summarized a general theoretical formalism of electromag- 

netic scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents. 

This addendum builds on the tutorial to provide a streamlined discussion of specific far-field limits and 

the corresponding reciprocity relations by introducing appropriate far-field operators and linear maps and 

deriving the reciprocity relations through the pseudo adjoint of these maps. We thereby extend the com- 

pact operator calculus used previously to consider the fields and sources near or inside the scattering 

object. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In a recent tutorial [1] , we have outlined a general and self-

onsistent theoretical formalism describing frequency-domain elec-

romagnetic scattering by an arbitrary finite object in the pres-

nce of arbitrarily distributed impressed currents. Sections 9–11 of

ef. [1] dealt with “far-field” limits, i.e., with scenarios wherein

he source and/or observation points are far from the scatterer.

he corresponding derivations are straightforward and successful

n proving fundamental reciprocity relations. However, they are

omewhat cumbersome and do not employ the operator calculus

nvoked in Sections 7, 8, and 12 to streamline the derivations for

elds and sources near or inside the scattering object. The goal

f this addendum is to remedy these deficiencies by introducing

ar-field operators and linear maps and deriving the reciprocity re-

ations through the pseudo adjoint of these maps. Not being con-

trained by the scope of the original tutorial, we pay more atten-

ion to mathematical rigor. 
∗ Corresponding author. 

E-mail address: yurkin@gmail.com (M.A. Yurkin). 
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. Notation and function spaces 

For the sake of consistency, we keep the notation of the orig-

nal tutorial [1] . In particular, bold letters denote vectors ( a , A );

old letters with a caret denote unit vectors ( ̂ a ); Italic capital let-

ers with a double-headed arrow denote dyadics ( 
↔ 

A ) or, depending

n the context, their matrix representations; Italic letters denote

arious variables or elements of a function space ( a , A ); and Italic

apital letters with a caret denote linear operators or maps acting

etween these spaces ( ̂  A ). We reserve the term “operator” for maps

etween a space and itself, and use handwritten capital letters to

enote function spaces themselves (A ) . 

First, let us define the space of (near) fields H n 
def = L 2 ( R 

3 ) 3 

uch that each Cartesian component of a field is square-integrable.

his space was implicitly assumed in Ref. [1] for electric fields

nd sources when the latter have finite support, i.e., are not

ero only in a finite volume. Moreover, this space naturally

orresponds to the finiteness of the energy of the electro-

agnetic field [2] . Second, we define the space of square-

ntegrable transverse far-fields defined on a unit sphere S 2 :

 f 
def = { E| E ∈ L 2 ( S 2 ) 

3 
, ∀ ̂  n ∈ S 2 : E ( ̂  n ) ⊥ ˆ n } . Owing to the orthogo-

ality condition, the fields in H f are effectively two-dimensional,

https://doi.org/10.1016/j.jqsrt.2018.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2018.08.007&domain=pdf
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i.e., H f is isomorphic (equivalent) to H f2 
def = L 2 ( S 2 ) 2 . The corre-

sponding isomorphism 

ˆ Q : H f → H f2 is local with respect to ˆ n , i.e.,

E ( 2 ) 

(
ˆ n 

)
= 

↔ 
Q 

(
ˆ n 

)
E ( 3 ) 

(
ˆ n 

)
, (1)

where parenthesized superscripts denote the corresponding di-

mensionality of the vectors or dyadics (if necessary) and 

↔ 

Q ( ̂  n ) is

the 2 × 3 matrix defining row-wise the orthonormal basis on a

sphere (thereby stretching the dyadic notation). We do not spec-

ify a particular basis (e.g., the standard spherical basis vectors ˆ e θ

and ˆ e ϕ ) and only require it to be real, thereby implying that 
↔ 

Q is

row-orthogonal, i.e., 

↔ 
Q 

(
ˆ n 

)
·

↔ 
Q 

T 
(

ˆ n 

)
= 

↔ 
I ( 2 ) , 

↔ 
Q 

T 
(

ˆ n 

)
·

↔ 
Q 

(
ˆ n 

)
= 

↔ 
I − ˆ n � ˆ n , (2)

where � denotes the dyadic product, the superscript “T” denotes

the standard transposition of a dyadic, and 

↔ 

I is the identity dyadic.

The second equality follows from uniqueness of the projector ma-

trix on the one-dimensional subspace parallel to ˆ n . Furthermore,
↔ 

I − ˆ n � ˆ n is equivalent to 
↔ 

I when acting on a transverse field,

hence 
↔ 

Q 

T ( ̂  n ) defines the inverse isomorphism 

ˆ Q 

−1 : H f2 → H f . In

the following, we will mostly deal with H f to be independent of
↔ 

Q ( ̂  n ) , but we have to consider H f2 in discussing the scattering ma-

trices. 

3. Main results 

The main entity in considering far-field quantities is the limit-
ing linear map defined as 

ˆ F : H n → H f , 
(

ˆ F E 
)(

ˆ n 

) def = lim 

r→∞ 

r exp ( −i k 1 r ) ( 
↔ 

I −ˆ n � ˆ n ) · E 

(
r ̂  n 

)
, (3)

where the limit exists due to square integrability in R 

3 , while the

projector ( 
↔ 

I − ˆ n � ˆ n ) is added for convenience to limit the range of

the map to H f . We neither use nor analyze ˆ F separately. Instead we

always combine it with a Green’s operator (explicitly or implicitly),

in which case the above projector becomes redundant. We start

with 

ˆ G f : H n → H f , ˆ G f 
def = 

ˆ F ˆ G , 
(

ˆ G f j 
)(

ˆ n 

)
= 

∫ 
R 3 

d 

3 r 
↔ 
G f 

(
ˆ n , r 

)
· j ( r ) , 

(4)

↔ 
G f 

(
ˆ n , r 

)
= 

1 

4 π
exp ( −i k 1 ̂  n · r )( 

↔ 
I − ˆ n � ˆ n ) , (5)

where ˆ G is the free-space Green’s operator given by Eq. (18) of Ref.

[1] and Eq. (5) is equivalent to Eq. (68) of Ref. [1] . Typically – e.g.,

Eq. (12) of Ref. [1] – the forcing function j has finite support V ,

implying j ∈ L 2 (V ) 3 ⊂ H n . The scattered far-field is expressed as 

E sca 
f 

def = 

ˆ F E sca = 

ˆ G f ̂
 U E = 

ˆ G f ̂
 T E S , E sca def = E − E S , (6)

which follows from Eqs. (22), (38), (39), and (69) of Ref. [1] . Here E,

E S , and E sca denote the total, incident (due to impressed sources),

and scattered fields, respectively. The operator ˆ U defines the scat-

terer and the transition operator ˆ T fully describes its electromag-

netic response as defined by Eqs. (13), (25), and (35) of Ref. [1] . 

Let us further define the pseudo adjoint [2] (or transpose [3] ) of
ˆ G f , denoted as ˆ G 

t 
f 

: H f → H n . It is done analogously to the Hermi-

tian adjoint, 〈
j, ˆ G 

t 
f E 

〉p 
H n 

def = 

〈
ˆ G f j, E 

〉p 
H f 

, ∀ E ∈ H f , ∀ j ∈ H n , (7)

but using the pseudo inner products 

〈 a, b 〉 p H f 
def = 

∫ 
2 

d 2 ˆ n a 
(

ˆ n 

)
· b 

(
ˆ n 

)
, 〈 a, b 〉 p H n def = 

∫ 
3 

d 3 r a ( r ) · b ( r ) (8)

S R 
nstead of the standard L 2 inner products, i.e., differing by complex

onjugation of the second argument. Mathematically, the pseudo

nner product is bilinear , i.e., linear in both arguments, while the

tandard inner product is sesquilinear , i.e., linear in the first ar-

ument but antilinear (conjugate-linear) in the second one. There

s no clear consensus in the literature on the proper symbol for

seudo adjoint, but we use the superscript “t” to distinguish it

rom the dyadic transpose, although the two concepts are closely

elated. 

The pseudo adjoint was defined (less rigorously) for operators

rom H f to H f by Eq. (45) of Ref. [1] , together with the notion of

seudo self-adjointness , i.e., the operator being equal to its pseudo

djoint. In particular, we use in the following the fact that the op-

rators ˆ G , ˆ U , and 

ˆ T , as well as the source Green’s operator ˆ G S are

seudo self-adjoint for any reciprocal medium (Eqs. (32), (57), and

58) of Ref. [1] ). 

Taking pseudo adjoint has many properties of the matrix trans-

osition or taking adjoint [2] , most importantly 

ˆ A ̂

 B 

)t = 

ˆ B 

t ˆ A 

t . (9)

hile any isomorphism conserves the inner product, Eq. (2) im-

lies that ˆ Q also conserves the pseudo inner product, i.e., 

ˆ Q a, ˆ Q b 
〉p 
H f2 

= 〈 a, b 〉 p H f 
. (10)

hus in Eqs. (7) and (8) , H f can be effectively replaced by H f2 

nd 

ˆ 
 

t = 

ˆ Q 

−1 ⇒ 

(
ˆ Q ̂

 G f 

)t = 

ˆ G 

t 
f 

ˆ Q 

−1 . (11)

Alternatively, ˆ G 

t 
f 

can be expressed through the integral kernel 

ˆ G 

t 
f E 

)
( r ) = 

∫ 
S 2 

d 

2 ˆ n 

↔ 
G 

t 
f 

(
r , ̂  n 

)
· E 

(
ˆ n 

)
, (12)

hich together with Eqs. (4) and (7) implies 

↔ 
 

t 
f 

(
r , ̂  n 

)
= 

[ ↔ 
G f 

(
ˆ n , r 

)] T 
. (13)

he dyadic 
↔ 

G 

t 
f 

can also be thought of as a free-space field from a

istant source: 

↔ 
 

t 
f 

(
r , ̂  n 

)
= lim 

r ′ →∞ 

r ′ exp 

(
−i k 1 r 

′ )↔ 
G 

t 
(
r , r ′ ˆ n 

)
, (14)

here the last superscript “t” can in principle be omitted owing

o the pseudo self-adjointness of ˆ G and the invariance of 
↔ 

G with

espect to argument interchange. But the entire analysis is valid

or an arbitrary background reciprocal medium, e.g., a semi-infinite

lane substrate. Then 

ˆ G is still pseudo self-adjoint, but the argu-

ents of 
↔ 

G can be interchanged only when combined with trans-

osition. 

The linear map 

ˆ G 

t 
f 

constructs the field due to a distribution of

istant sources and is related to the vector Herglotz wave func-

ion (Eq. (6.94) of Ref. [4] ). In particular, the incident (source) plane

ave with an amplitude E 

inc 
0 

propagating along ˆ n 

inc is given by 

 

S ( r ) 
def = E 

inc 
0 exp 

(
i k 1 ̂  n 

inc · r 
)
, (15)

hich can be transformed using Eqs. (5) and (13) into 

 

S = 4 π ˆ G 

t 
f 

ˆ H E inc , E 

inc 
(

ˆ n 

)
= E 

inc 
0 δ

(
ˆ n − ˆ n 

inc 
)
, (16)

here δ( ̂  n ) is the solid-angle delta function, while the linear oper-

tor ˆ H : H f → H f inverts the direction of ˆ n and can be represented

s an integral operator with the kernel 

↔ 
 

(
ˆ n , ̂  n 

′ ) = 

↔ 
I δ

(
ˆ n + ˆ n 

′ ). (17)
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bviously, ˆ H 

t = 

ˆ H 

−1 = 

ˆ H . Eq. (16) can also be obtained by explicitly

oving the source to infinity (with a linear scaling of its ampli-

ude) according to Eq. (14) , as was done in Ref. [1] . Strictly speak-

ng, neither E inc nor E S in Eq. (16) are square-integrable due to

he delta function, i.e., E inc / ∈ H f and E S / ∈ H n . However, they can

e defined as the limits of sequences from these spaces (i.e., as

eneralized functions), and the central Eq. (7) remains valid since

oth pseudo inner products are well defined, albeit potentially un-

ounded if at least one of the arguments is square-integrable. 

The far-field scattering linear operator ˆ A : H f → H f with the

yadic kernel 
↔ 

A ( ̂  n 

sca , ̂  n 

inc ) is defined by Eq. (69) of Ref. [1] or,

quivalently, as 

ˆ 
 E inc def = E sca 

f (18) 

cf. Eq. (6.98) of Ref. [4] ), which together with Eqs. (6) and (16) im-

lies 

ˆ 
 = 4 π ˆ G f ̂

 T ˆ G 

t 
f 

ˆ H ⇒ 

ˆ A 

t = 

ˆ H ̂

 A ̂

 H , (19)

ince ˆ T is pseudo self-adjoint. The last part of Eq. (19) is exactly

he far-field reciprocity relation: 

↔ 
 

(
ˆ n 

sca , ̂  n 

inc 
)

= 

[ ↔ 
A 

(
−ˆ n 

inc , −ˆ n 

sca 
)] T 

. (20) 

The widely used amplitude scattering matrix [5] is the follow-

ng 2 × 2 dyadic 
↔ 

A (2) corresponding to the operator ˆ A (2) : H f2 →
 f2 : 

↔ 
 ( 2 ) 

(
ˆ n 

sca , ̂  n 

inc 
) def = 

↔ 
Q 

(
ˆ n 

sca 
)↔ 
A 

(
ˆ n 

sca , ̂  n 

inc 
)↔ 
Q 

T 
(

ˆ n 

inc 
)
. (21) 

ubstituting Eq. (21) into Eq. (20) we obtain the modified reci-

rocity relation 

↔ 
 ( 2 ) 

(
ˆ n 

sca , ̂  n 

inc 
)

= 

[ ↔ 
R 

(
ˆ n 

inc 
)↔ 
A ( 2 ) 

(
−ˆ n 

inc , −ˆ n 

sca 
)↔ 
R 

T 
(

ˆ n 

sca 
)] T 

, (22) 

here we used Eq. (2) and 

↔ 
 

(
ˆ n 

sca , ̂  n 

inc 
)

· ˆ n 

inc = ˆ n 

sca ·
↔ 
A 

(
ˆ n 

sca , ̂  n 

inc 
)

= 0 (23) 

by definition of H f ). The 2 × 2 dyadic 

↔ 
 

(
ˆ n 

) def = 

↔ 
Q 

(
ˆ n 

)↔ 
Q 

T 
(
−ˆ n 

)
(24) 

akes a simple form in many natural bases. In particular, for a

tandard spherical basis 
↔ 

R is a diagonal matrix with elements + 1

nd − 1, then its effect in Eq. (22) amounts to inverting the sign of

he off-diagonal elements (cf. Eq. (5.31) of Ref. [5] ). 

Analogously, the generalized scattering linear map 

ˆ S : H f → H n 

ith the kernel 
↔ 

S ( r , ̂  n ) is given by 

ˆ 
 E inc def = E sca ⇔ 

ˆ A = 

ˆ F ˆ S , (25) 
[  
f. Eq. (73) of Ref. [1] . Combining this definition with Eq. (18) , we

btain 

ˆ 
 = 4 π ˆ G ̂

 T ˆ G 

t 
f 

ˆ H ⇒ 

(
ˆ S ̂  H 

)t = 4 π ˆ G f ̂
 T ˆ G = 4 π

(
ˆ G Sf − ˆ G f 

)
, (26) 

ˆ 
 Sf 

def = 

ˆ F ˆ G S = 

ˆ G f − ˆ G f ̂
 T ˆ G . (27) 

q. (26) is the mixed (far-near-field) reciprocity relation, when ex-

ressed in terms of kernels: 

 ↔ 
S 
(
r , −ˆ n 

)] T 
= 4 π

[ ↔ 
G Sf 

(
ˆ n , r 

)
−

↔ 
G f 

(
ˆ n , r 

)] 

= 4 π lim 

r ′ →∞ 

r ′ exp 

(
−i k 1 r 

′ )↔ 
G S 

(
r ′ ˆ n , r 

)

− exp 

(
−i k 1 ̂  n · r 

)(↔ 
I − ˆ n � ˆ n 

)
. (28) 

inally, one may also express ˆ S as 

ˆ 
 = 4 π

(
ˆ G 

t 
Sf − ˆ G 

t 
f 

)
ˆ H . (29) 

he mixed reciprocity relations can also be proven directly from

he underlying scattering problem, see Theorem 6.31 of Ref. [4] 

. Conclusion 

The theme of this addendum is aligned with that of the original

utorial [1] . Most importantly, we provided a streamlined deriva-

ion of the far-field and mixed reciprocity relations ( Eqs. (20) ,

22) and (28) ) through the analysis of the pseudo adjoints of the

orresponding linear maps. More generally, the whole operator cal-

ulus described in a concise manner can be useful for theoretical

nalyses of scattering problems for complex scenarios, such as a

emi-infinite plane substrate [6] , whose effect can be accounted for

y a proper modification of the environment operator ˆ G . 
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