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Abstract

Ž .A numerical procedure is proposed for finding a curve that provides a given curve e.g., experimental spectral contour in
integral convolution with a known function. The experimental curve itself is assumed to be a zero approximation. In order to
obtain the required function for the ‘‘i’’ iteration, the ‘‘iy1’’ iteration function is corrected by the difference between the
experimental curve and the convolution of the ‘‘iy1’’ iteration function. The solution obtained is not an oscillating

Ž .function, as in Fourier self deconvolution, and allows if necessary for both the prohibition of a negative value and the
Ž .limitation on the domain of the required function break, cut-off . As an example, the statistical frequency distributions of

the uncoupled vibrations of liquid water OH-oscillators have been calculated from the Raman spectra from 10 to 2008C. This
procedure occurs also to be efficient for smoothing ‘‘noisy’’ experimental curves and involves only two parameters: the
width of a ‘‘smoothing window’’ determining a resolution of the required details of the curve and the number of iterations.
q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many areas of spectroscopy, the experimentally
obtained curve is, for a number of reasons, the result
of integral convolution of the desired spectral distri-
bution with some function which can be often esti-
mated from physical considerations or independent
experiments. It is known, for example, that a fre-
quency of the decoupled OH- vibration of a water

y1 Žmolecule cannot exceed n s3707 cm unbondedu
.OH-group stretches in vapor whereas the experi-
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mental infrared and Raman spectra in liquid reach
3900 cmy1. Obviously, the intensity observed at
n)n does not correspond to any physical states ofu

OH-oscillators. According to the fluctuation concept
w xof hydrogen bonding 1–3 , it results from the con-

Ž .volution of the frequency-limited nFn statisticalu
Ž .distribution P n of OH-oscillators in various local

surroundings and thus, perturbed by hydrogen bonds
of different strength, with an eigen spectral contour

Ž .of each oscillator intrinsic lineshape .
Recent advances in computer facilities and new

theoretical developments have made it possible to
use not only the averaged spectrum characteristics
Žthe peak frequency, integral intensity, half-width,

0924-2031r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0924-2031 99 00085-5



( )Yu.Ya. EfimoÕrVibrational Spectroscopy 23 2000 57–6958

.etc. but also all details of a band as well as its
temperature evolution for studying associated liquids
and amorphous solids. It allowed one to formulate a

Ž wnew approach spectroscopy of statistic contours 1–
x.10 giving a unique information on the individual

characteristics of molecules in a statistic ensemble.
Thus, analysis of the temperature dependence of the
spectral band shape of liquid water OH-oscillators in

w x w xIR- 4,5 and Raman spectra 6,7 gave two tempera-
ture-independent functions relating to the vibration
frequency n of each oscillator to the energy of aOH

Ž .hydrogen bond E n , perturbing it and the degener-
acy of the realization of such a hydrogen bond,
Ž .W n . These functions explain the mechanism of

energy redistribution in a statistic ensemble of hy-
drogen bonds with varying temperature, and were
used both to describe quantitatively the transforma-
tion of spectral contours in the available temperature
range, and to propose an approach to calculate a
distribution function of H-bond energies and some

w xthermodynamic functions 8–11 .
The goal of this paper is to develop a simple and

reliable method for obtaining initial data for a similar
analysis from experimental spectra. From a mathe-
matical viewpoint, it describes a new algorithm for
the solution of the equation of integral convolution.
Besides, the paper illustrates the possibility of apply-
ing this method for solving another practical problem
of experimental data processing, i.e., their smoothing
Ž .suppression of statistic noise , with a required de-
gree of resolution of the necessary details of experi-
mental curves.

2. DIDP as the algorithm of solving inverse prob-
lem of integral convolution

A standard method for solving the inverse prob-
lem of integral convolution

n2 X X XS n s P n w nyn dn 'Conv P n ,Ž . Ž . Ž . Ž .Ž .H
n1

1Ž .

Ž . Ž Ž ..i.e., the determination of P n 'Deconv S n for
Ž .the known experimental curve S n and a convolv-

Ž . Ž .ing function w n in finite limits n , n , is the1 2

inverse Fourier transformation of the result of divi-
Ž .sion of the Fourier transform of S n by the Fourier

Ž .transform of w n . Using this technique, in particu-
Ž .lar, the statistic contours P n for isotopicallyOH

diluted HOD molecules in heavy water have been
w xfound from IR-spectra 12 . However, owing to the

intrinsic properties of Fourier transformation in its
traditional form, the necessity to reproduce the

Ž .‘‘break’’ of the required P n at nsn , and someu

other reasons, the resulting solution is oscillating and
w xcontains the domains of negative values 13,14 . To

eliminate these artefacts correctly in the framework
of this method is a nontrivial problem that calls for
separate consideration of each concrete case. For

Ž .example, the interpolation of P n by a sum of
modified Pearson’s distributions was used in Ref.
w x12 . We suggest quite a different method for solving

Ž .the convolution Eq. 1 and use the analytical expres-
Ž .sions for statistic contours P n ,T obtained in Ref.

w x12 as a model to illustrate our approach.
Ž .Let P n be the required statistic distribution

Ž . Ž . Ž .Fig. 1, curve 1 and S n Fig. 1, curve 2 be its
Ž .convolution 1 with the Lorentzian

2X X2L nyn s2 Hr p H q4 nyn . 2Ž . Ž . Ž .½ 5
Ž . Ž .A given form of a convolving function w n sL n

corresponds to the homogeneously broadened con-
tour of an individual OH-oscillator involved in the
statistic ensemble at its own frequency, n

X; its half-
width, H'Dw s30 cmy1, is estimated from the1r2

spectrum of HOD solution in CCl . In this non-polar4

solvent the hydrogen bonds causing the nonequiva-
lence of various OH-oscillators in water, are absent,
Ž .P n degenerates into the d-function nearby n , andu

Ž .the experimental spectral contour S n must reduce
Ž .to w n .

Ž .Our aim is to obtain curve 1 from curve 2 Fig. 1
Ž .for the known w n . As zero approximation, we take

0Ž . Ž . ŽP n sS n , i.e., curve 2 which is already the
Ž .result of convolution of the required P n with

Ž .. Ž . ŽL n and convolve it with L n again squares 3 in
. Ž .Fig. 1a . Let us calculate the incompatibility misfit

1Ž .function d n as the difference between ‘‘experi-
Ž . Ž .mental’’ S n curve 2 , and the obtained curve 3.

Ž .As the first approximation for P n , we assume that
1Ž . 0Ž . 1Ž . Ž .P n sP n qd n dots 1 in Fig. 1a . The

Ž . Žconvolution of this curve with L n circles 2 in
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Ž Ž . Ž ..Fig. 1. DIDP in its simplest variant Eqs. 3 and 4 . Solid line 1:
Ž .statistical contour P n of OH vibrations of water molecules in

liquid at 1008C calculated from IR-spectra of diluted HOD solu-
w x Ž .tion in D O 12 , curve 2: its convolution, S n , with Lorentzian2

Ž . y1 Žcontour w n of half-width Hs30 cm the model of experi-
Ž .. Ž . Žmental spectrum, see Eq. 1 . a Result of first iteration dots 1

.and circles 2 for curves 1 and 2, respectively . Squares 3: convolu-
Ž .tion of curve 2 with Lorentzian contour; b Result of third

Ž Ž . .iteration see Eq. 3 for is3 .

.Fig. 1a shows that already first iteration describes
Ž . 1Ž .well the ‘‘experiment’’, S n , starting from P n .

ŽFig. 1b depicts the result of third iteration dots and
. Ž . Ž .circles compared to models P n and S n , respec-

tively.
In the general form our procedure in its simplest

variant is as follows

P i n sP iy1 n qd i nŽ . Ž . Ž .
d i n sS n yConv iy1 n 3Ž . Ž . Ž . Ž .

n2 UX X Xi iConv n s P n w nyn dnŽ . Ž . Ž .H
n1

for given initial conditions

P 0 n sS nŽ . Ž .
n2 X X X0 0Conv n s P n w nyn dn 4Ž . Ž . Ž . Ž .H

n1

All calculations have been performed by a set of
discrete points from 2900 to 3900 by 10 cmy1 with
no extrapolation or cut-off, summation was used
instead of integration.

Ž . Ž .It can be shown that Eqs. 3 and 4 realize the
iteration solution of inhomogeneous integral Fred-
holm equation of second type by a formal Neuman
series. A rigorous foundation of procedure conver-
gence is beyond the framework of this paper. For
brief remarks and references see Appendix A.

In the above real example, the convolving func-
Ž .tion w n estimated from the independent experi-

ment, appeared to be much more narrow than the
Ž .statistic distribution, P n . Three to five iterations

are quite sufficient in this case to find the solution
Ž .differing from the initial model curve within the

level of experimental errors, characteristic for in-
frared measurements. Fig. 2 shows the case where

Ž . Ž .the P n and w n widths are comparable in their
values. In this case, tens of iterations are necessary
to reach similar agreement of the solution derived
Ž . Ž .dots and circles with the known one solid lines .
Nevertheless, the procedure allows one to restore the
curve of statistic distribution 1 with two well pro-
nounced maxima from the Gauss-like ‘‘experimen-
tal’’ curve 2 with no visible bimodality.

Fig. 2,a shows results obtained by the same sim-
Ž Ž ..plest scheme Eq. 3 as in Fig. 1. In both cases near

3700 cmy1, we observe a small region of negative
values, similar to the solution from Fourier self
deconvolution, which is followed by the region of

Ž .positive values although P n at n)n is sure to beu

a zero. A simple way to avoid this defect is the
introduction of an artificial limitation on each itera-
tion

P i n sP iy1 n qd i n , if P i n G0 5aŽ . Ž . Ž . Ž . Ž .

P i n s0, if P i n -0 or n)n 5bŽ . Ž . Ž .u

Ž .Two different limitations in Eq. 5b can be used
separately if, for example, it is necessary to provide

Ž .the non-negativity of the required P n with no
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Fig. 2. Deconvolution of spectral contour in the case of strong
homogeneous broadening. Solid line 1: the same as in Fig. 1,

Ž .curve 2: its convolution 1 with Lorentzian contour with a
y1 Ž .half-width of 100 cm . Dots 1 and circles 2: reconstructed P n

Ž . Ž .and S n , respectively. Result of 30th iteration. a Procedure in
Ž Ž . Ž .. Ž .the simplest variant Eqs. 3 and 4 ; b DIDP with prohibition

Ž . Ž .of the negative values of P n and condition P n s0 for all
Ž Ž . Ž . .n )n Eqs. 3 and 4 with limitation 5 .u

limitation of its domain of definition or, on the
Ž .contrary, to set the domain of P n without de-

mands of its sign constancy. These limitations pro-
Ž .viding the positively defined solution for P n effect

neither the convergence of the procedure, nor the
computation time, which is about 1 s per 10 itera-
tions by IBM PC with the 486 processor.

Fig. 2b shows that such a modification of DIDP
allows one to obtain the solution corresponding to

Ž .the physical meaning dots 1 . In this case, its prov-
Ž .ing convolution circles 2 coincides with the ‘‘ex-

perimental’’ curve 2 no worse than in Fig. 2a both
visually and according to the residual sum of squares.

This illustrates the known fact that the inverse prob-
lem of integral convolution within finite limits at the
finite point set has many solutions. Section 3 demon-
strates that the oscillating solutions are also possible

Žamong of them, particularly if a non-smoothed com-
. Ž .plicated by statistic noise curve is used as S n .

It is interesting to note that if a non-negative
Žsolution does not exist for example, if the intrinsic

linewidth, H, was chosen too large for the deconvo-
. iŽ .lution procedure , the family of consequent P n

distributions does not diverge. It converges to a
Ž .curve which does not fit the ‘‘experiment’’, S n ,

after the convolution, indeed, but provides the mini-
Ž .mal possible residual sum of squares between S n

iŽ .and S n .

3. Spectrum deconvolution in the presence of
statistic noise

In Section 2 we used the analytically determined,
i.e., ideally smooth, initial curves. Any real spectrum
is noisy, i.e., most points deviate from the ‘‘ideally
smooth’’ curve. In this case, the above mentioned

Ž .iteration procedure of finding P n increases repeat-
Ž .edly such deviations solid lines in Fig. 3b,c by
iŽ .adding intensity to P n at frequencies where the

Ž .S n points lie above the ‘‘ideally smooth’’ curve
iŽ .and by subtracting intensity from P n for the

points lying below this curve. Thus, the solution,
iŽ .P n , diverges in this case, and the level of ‘‘noise’’

will exceed the spectrum magnitude after few tens of
iterations. However, since the incompatibility func-

iŽ .tion, d n , which governs the iteration process, is
counted from the ‘‘noisy’’ curve, the convolution of

Ž .this solution with the Lorentzian contour, w n , is
still in agreement with the model of experiment
Ž .circles and solid lines in Fig. 3a as in the case of

Ž . Ž .smooth S n Figs. 1 and 2 . This testifies to the fact
that the oscillating curves are also the solutions of
the inverse problem. Such behavior is observed both

Ž . Ž . Ž .with Fig. 3b and without Fig. 3c limitations 5
which leads to different solutions, indeed. It is con-
cluded then that before solving the inverse problem
it is necessary to smooth carefully the experimental
curves to obtain the physically comprehended solu-
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Ž .Fig. 3. DIDP in the presence of statistic noise. a Circles:
Žexperimental spectrum model curve 2 in Fig. 1 with addition of

.random noise of amplitude up to 1% of the peak intensity ; solid
iŽ . Žline: the result of the convolution of calculated P n oscillating

. Ž y1 . Ž .curve in b with a Lorentzian half-width of 30 cm . b Dots: a
Ž . Ž .given initial distribution of P n the same as curve 1 in Fig. 1 ,

Ž . Ž .oscillating curve: the result of 30 iterations by Eqs. 3 and 4
Ž . Ž .without limitation 5b . c the same as in b but using limitation

Ž .5b .

tions from the set of possible ones. Fourier self-de-
convolution is free of this complication.

We can, however, modify slightly the DIDP algo-
rithm involving its internal smoothing facilities. Thus,

iŽ . iy1Ž .if the calculated d n value is added to P n

not only at a given frequency n , but also at the
neighbouring ones by distributing it in decreasing
order with respect to its closeness to this frequency

Že.g., according to the Lorentzian or Gaussian distri-
Ž X ..bution law x nyn

n2 UX X Xi iy1 iP n sP n q d n x nyn dnŽ . Ž . Ž . Ž .H
n1

6Ž .

then, owing to the mutual compensation of contribu-
Ž .tions of the points ‘‘falling’’ above and below S n ,
Ž .we can block up a progressing ‘‘noise’’ in P n

Ž .Figs. 4 and 5 . A half-width of such a smoothing
distribution, D x , should be large enough to pre-1r2

Fig. 4. The result of the deconvolution of a noisy spectrum
Ž . Ž Ž .circles in Fig. 3a with internal suppression of noise Eq. 6

Ž . Ž . Ž .instead of Eq. 5a after three a and 50 b iterations. D x s201r2
y1 Ž . iŽ . Ž .cm . Solid line: initial P n , dots: its reconstruction, P n . c

iŽ . Ž .Solid line: result of convolution of the solution, P n dots in b ,
Ž . Ž .with w n , cirlces: a model of noisy experimental curve Fig. 3a .
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Ž . y1Fig. 5. a and b : the same as in Fig. 4b,c but for D x s100 cm .1r2

vent an increase in noise amplitude but not to ham-
per the restoration of substantial details of the spec-
trum and to require a great number of iterations. The
latter is important because the computation time in
this variant of DIDP enlarges about an order of

Ž .magnitude per 1 iteration as compared to Eqs. 3
Ž . Ž . Ž .and 4 or Eqs. 5a and 5b .

Ž .As an example, Fig. 4a,b show that x n with
Hs20 cmy1 does not provide efficient noise sup-
pression. Three iterations are enough to resolve main

Ž .features of P n , but the noise level grows up
Ž .approximately twice Fig. 4a . As the number of

iterations increases, the noise amplitude continues to
Ž .increase Fig. 4b . It is interesting that the convolu-
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Ž . Ž .tion of the obtained P n with w n tends in this
Ž . Žcase to the noisy S n Fig. 4c, solid line and circles,

.respectively .

When we take the Lorentzian with half-width
y1 Ž .Hs100 cm as x n , an increase in noise ampli-

Ž .tude is fully suppressed Fig. 5a . However, the

Ž . Ž . Ž . Ž . Ž .Fig. 6. a Statistic P n distributions of the frequencies of OH-group vibrations in liquid water molecules at 108C 1 , 508C 2 , 908C 3
Ž . w x y1and 2008C 4 calculated from experimental spectra 15,16 . Convolving function: Lorentzian with Hs30 cm . Algorithm with
Ž . y1 Ž .limitations 5 is used, n s3707 cm . b circles: experimental spectra of an isotropic component of the Raman spectra of diluted H Ou 2

w x Ž . w x Ž .solution in heavy water D O 15 10–908C and 16 2008C normalized by area to unity. Solid lines: a checking convolution of2
iŽ . Ž . y1determined P n a with Lorentzian of half-width Hs30 cm .
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number of necessary iterations amounts to several
iŽ .tens. The misfit function, d n , decreases mono-

tonously with the iteration number, i, so the solution
Ž .in this case is converging in respect to both P n

Ž .and S n .

In general, we couldn’t give at present a strict rule
Ž .for determination of H value for x n . It is a

subject for more detailed investigation, including the
separation of H values leading to convergence or

Ž .divergence in P n solution. The best way to avoid

Ž . Ž . Ž Ž .Fig. 7. Smoothing of model S n curve with random noise up to "3% of peak intensity circles by the simplest algorithm Eqs. 3 and
Ž .. y1 Ž . Ž . Ž . Ž . iŽ . Ž . Ž4 , Hs30 cm . a the number of iterations is1 dashed line and 5 solid line ; b dots: P n at is5, solid line: P n curve 1 in

.Fig. 1a .
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this problem is to smooth experimental spectra, when
possible, and use less complicated variant of DIDP.

It is interesting to note that the convolution check-
y1 Žing the solution obtained for Hs100 cm Fig. 5b,

.solid line almost coincides in this case with the
Ž .initial smooth S n depicted by curve 2 in Fig. 1

Ž .rather than with the ‘‘experimental’’ noisy S n

Ž .Fig. 5b, circles as it was in Fig. 4c. This illustrates

the known smoothing property of convolution proce-
dure which will be further used to construct a simple
and efficient smoothing algorithm.

As the practical application of the DIDP method,
we calculated the statistical distributions of the fre-
quencies of liquid water OH-oscillators from Raman

Ž .spectra Fig. 6 in addition to similar distributions
w xderived earlier from IR spectra 12 . The results

y1 Ž . Ž . iŽ .Fig. 8. The same as in Fig. 7 at Hs100 cm , is10 dashed line and is250 solid line . Points in b: P n at is250.
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obtained are very close, although there is a sharp
difference between two sets of initial spectra caused
by the different dependence of spectral intensity on
hydrogen bond strength in these two experimental
methods. This fact verifies the validity of the statisti-
cal contours calculated.

4. DIDP as a smoothing algorithm with a con-
trolled degree of resolution of details

There are many methods for smoothing the curves
with noise, e.g., polynomial approximation by the
least-squares fit and smoothing splines, the methods

iŽ . Ž Ž . y1 .Fig. 9. The same as in Figs. 7 and 8 but using the algorithm for self-suppressing noise in P n Eq. 6 at D x s50 cm . Hs1001r2
y1 Ž . iŽ . Ž . iŽ .cm , is50; a circles: initial curve with noise, solid line: S n at is50. b P n at is50.
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of spectral filtration based on Fourier transformation
with the truncation of the highest harmonics. Our
method has so much in common with the latter,

Žbecause it transforms the entire curve not the frag-
ments with their sewing as, e.g., when using smooth-

.ing splines , employs a direct and inverse transfor-

Žmation in our case these are convolution and decon-
.volution and allows one to regulate a smoothing

Žscale in our case by varying the half-width of a
Ž .convolving distribution w n and the number of

.iterations . The difference is in the fact that the
Ž .‘‘auxiliary’’ function is not sine or cosine but just

w x Ž . Ž Ž . Ž ..Fig. 10. Variants of smoothing of a real set of 445 experimental points 17 circles by the simplest algorithm Eqs. 3 and 4 . As a
Ž . Ž . Ž .convolving function w n , we take the Gaussian with half-width Dw s5 of experimental points solid line , 20 points dotted line , 501r2

Ž . Ž . Ž .points short-dash line , 200 points dash-and-dotted lines and 500 points long-dash line . The number of iterations is10 for all cases
Ž . Ž . Ž .except Dw s50 points short-dash line where is30. a the entire smoothed curve; b and c its fragments on an enlarged scale.1r2
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an arbitrary function normalized by area to unity
including triangle, trapezoid or rectangle which al-
lows one to choose the most effective variant for a
concrete smoothing signal. In addition, the main

Žsmoothing parameter the half-width of contour
Ž ..w n has an obvious physical meaning of the width

of ‘‘filtration window’’ in the direct rather than
Žinverse space. In Fourier smoothing procedure this

role is played by a cut-off in the reverse Fourier
.transform .

The algorithm idea is based on the smoothing
properties of convolution transformation and is as

Ž .follows. Let S n be an experimental curve to be
smoothed. As in Section 2, it is subjected to iteration
Ž Ž . Ž ..formulas 3 – 4 . However, compared to the prob-
lem of deconvolution search, the main attention is

Ž . Ž .paid not to P n but to S n . The form and half-
Ž .width of the convolving function w n are not re-

Žlated to any real process the intrinsic spectral con-
tour of an individual oscillator, apparatus function,

.etc. and can be chosen with respect to the required
resolution of the smoothed curve peculiarities. Our
calculations demonstrate that when the number of

iŽ .iterations, i, tends to infinity, S n converges to the
Ž .initial noisy curve. Stopping the process of decon-

volution–convolution for various i, we obtain the
iŽ .different smooth S n curves differing in the degree

Ž . Ž .of closeness to the initial noisy S n . In this case,
Ž .the wider is the convolving function w n , the greater

is the degree of smoothing after first few iterations
Žthe analog of ‘‘truncation’’ of high frequencies in

.the methods of spectral filtration and the greater is
the number of iterations necessary to reach the reso-
lution of ‘‘high-frequency’’ features if it is assumed
that they have a physical meaning and do not result
from random fluctuations. Thus, the number of i
iterations so as Dw becomes the main parameter1r2

of smoothing.
As is expected, when using the simplest variant of

Ž . Ž .DIDP algorithm according to formulas 3 – 4 , the

w xFig. 11. Variants of smoothing of highly noisy data for 505 experimental points 17 . Dw s31 points, 71 and 101 points, respectively.1r2

Results of 10 iterations.



( )Yu.Ya. EfimoÕrVibrational Spectroscopy 23 2000 57–69 69

iŽ .noise on the P n function increases constantly
Ž .with increasing number of iterations Fig. 7b bring-

ing this function seemingly close to the spectrum of
Ž .white noise Fig. 8b . However, as has been men-

tioned, this function has an auxiliary character in a
smoothing algorithm and of importance is only the

Ž .fact that its convolution with w n gives further a
Ž . Ž .smooth S n Fig. 7a and Fig. 8a .

Ž .Internal self-suppression of noise formula 6
Ž . Ž .when smoothing S n Fig. 9a has no obvious

advantages over the simplest DIDP algorithm al-
iŽ . Ž .though the P n form remains in this case Fig. 9b

less senseless than that in Fig. 8b. In particular, the
domain of negative values at n;n implies that theu

problem of deconvolution of a given spectral contour
Ž Ž .by such a wide Lorentzian a half-width of w n ,

y1 .Hs100 cm was used has no positive solution. It
was confirmed by the failure to obtain such a non-

Ž . Ž Ž ..negative P n by imposing limitations 5b which
Ž .could describe satisfactorily S n after the convolu-

Ž .tion with w n .
Fig. 10 shows the peculiarities of our method

when smoothing the curve with the form differing
extremely from the above spectral contours. Particu-
larly, it is alternating and is of a pronounced oscillat-
ing nature, possibly, with several frequencies. Vary-
ing the width of a convolving function, we can
obtain various smooth curves to describe both the

Ž .high-frequency solid line and low-frequency
Ž .short-dash line oscillations and to average them

Ž .completely long-dash line .
Fig. 11 illustrates potentialities of the procedure

in smoothing a set of experimental data with a very
high level of noise. The given curves correspond to
three different widths of a ‘‘smoothing window’’. As
this width decreases further, the smoothed curves
describe an increasing number of local minima and
maxima in distribution of experimental points, and at
Dw s1–3 they cross all points after several itera-1r2

tions without increasing noise amplitude.
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Appendix A

Ž .Eq. 1 is a linear integral equation of first type
Ž X. Ž X.with a symmetric core K n ,n sw nyn . It is1

readily transformed into inhomogeneous integral
Fredholm equation of second type

n2 X X XP n sS n q K n ,n P n dn 7Ž . Ž . Ž . Ž . Ž .H 2
n1

Ž w x.see 18 , with the core

K n ,n X sd nyn
X yw nyn

X . 8Ž . Ž . Ž . Ž .2

Ž X. ŽHere, d nyn is the Dirac delta-function not to be
iŽ . Ž .confused with our misfit function d n in Eqs. 3 ,

Ž . Ž . .5a and 5b and in the text .
Successive approximations

n2 X X Xi iy1P n sS n q K n ,n P n dn , 9Ž . Ž . Ž . Ž . Ž .H 2
n1

Ž . Ž .numerically realized by Eqs. 3 and 4 , give the
Newman series converging under certain conditions

Ž .for P n solution.
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