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Fluctuation theory of hydrogen bonding applied to vibration spectra
of HOD molecules in liquid water. I. Raman spectra
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Statistical distributions of the frequencies of (OH vibrations calculated from the experimental
Raman spectra of HOD molecules over the temperature range of 10-208°C using the recentiy
developed deconvoluiion technique have been analysed in the framework of fluctuation theory
of hydrogen bonding. Two temperature independent functions that are the basis of the
Zhukovsky theory for describing the temperature transformation of frequency distribution
functions of OH vibrations in a statistical ensemble of O—H- .0 bonds were established and
analytically approximated. This made it possibie to reconstruct the eatire set of initial spectra
and to extrapoiate their forms to & wider temperature range. These results support the con-

tnuam model of liguid water structure,

1. Introduction

There are at present two main approaches to explain
the origin of very wide band widths in the vibrational
spectra of water. The first is based on the mixed (mix-
ture) models of water that postulate that this liguid is
represented by a finite set of species consisting of either
associates of water molecules or the hydrogen bonds of
different discrete configurations (strong, weak, very
weak, broken, etc.). The observed spectral band is
then a superposition of contours corresponding to
these species. This method has the great disadvantage
that it is almost impossible to assign theoretically the
positions, widths and forms of spectral contours of
each sort. Therefore in practice this method reduces
the description of the broad band o its decomposition
mto components (typical examples are [1, 2}). This pro-
cedure is purely formal and cannot be considered of
course as the theory of the form of spectral bands, espe-
cially as it leaves open the question of the origin of the
iarge widths of component contours.

It is the continuum model of water that reveals the
direct way to the constructive theory. It is based on the
fluctuation concept of hydrogen bonding, according to
which very broad bands in the vibrational spectra of
water OH oscillators reflect a continual statistical distri-
bution of geometrical configurations of the G—H-..O
hydrogen bridge inherent in hquids (unlike crystals) and
caused by fluctuations in the local environment of difs
ferent H,0 molecules. The cornersione of the theory is
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the statistical contour P(r) that describes the probability
that an OH oscillator has the definite frequency v in the
continual ensembie of hydrogen bonds. Unfortunately,
the present state of the Hguid theory does not allow us to
calculate P(v} from #rst principles. However, other
possibilities exist for developing a fluctuation theory.

In [3] we accepted P(v) to be a Gaussian distribution,
and showed that the fluctuation coneept reproduces, at
jeast qualitatively, the main features in the spectra of
both hquid water and its complexes with organic
bases. Rice ef al. devoted a number of papers {4] to
the construction of the different distributions of the con-
tinual model of hydrogen bonding in water, and in par-
ticular the water spectral contours {3}, on the basis of
some empirical and model information.

The decisive step in developing the formalism of the
fluctuation theory as applied to spectral contours was
made by Zhukovsky [6]. He put forward the hypothesis
that the statistical contour is the Boltzmann function

P, T) = Q" (IW (v} exp (~E(w)/kaT), (1)

where Q{T) = [W (v} exp{(—E(v)/kpgT) dr is the statis-
tical integral. The central point of the Zhukovsky
hypothesis is that both the functions determining the
frequency dependence of the statistical contour, ie.,
the H bond energy corresponding to the stretching fre-

" guency ¥, E{v}, and the statistical degeneracy of such H

bond configurations, W{v), are temperature indepen-
dent. It is difficult to prove this thesis theoretically.
However, it is in agreement with a set of experimental
facts [6-8]. The major condition for the temperature
invariance of functions E(v) and W{v) is apparently
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the consiancy of water density over the temperature
range under study.

The description of water spectra shouid begin with
HOD molecules, to exclude the coupling of OH oscilla-
tors that additionally complicates the spectra of H,0
molecuies {this dynamic process has no relation to con-
figuration statistics). Then the intensity of absorption
{or scattering) by all OH {or OD) oscillators at fre-
quency v is given by the formuia

10) = [FPwhetv ),

where F(r} is the intensity factor sharply increasing in
the IR spectrum from the high to the low frequency
wing but remaining practically unchanged along the
band in the isotropic component of the Raman spec-
trum. It is the difference in the F(v} functions that
causes distinctions in the band shapes in the IR and
Raman specéra. This fact makes it preferable to utilize
Raman spectra for studying the statistics of hydrogen
bond configurations.

in equation (2), w{v — v'} is the spectral line (homo-
geneously broadened) of individual OH oscillators com-
posing the inhomogeneously broadened band under
study. Its centre at a frequency v’ is shifted further to
low frequencies the stronger is the H bond in which this
oscillator engages. If the absorption {scattering) lines of
the individual oscillators are assumed to be infinitely
narrow, ie., for use in equation (2),

v~ vy = 5y - v"), (3)

then a simpile relationship folows from equation (1) that
the shape of the stretching band of HOD molecules
should satisfy at two any temperatures T) and T,

in(I(v, T1)/Hv,T3}) = C{T, Ty) + E@}1 /T, - 1/T3) /Ky,
(4)

where C(T,,T;} is a frequency independent constant.
As a first stage we may assume a linear relation between
the H bond energy and the frequency of the Badger—
Bauer type:

E(v) = ~b(1y, ~ v}, (5)

where vy is the frequency of a free OH group not enga-
ging in hydrogen bond. Then equation {4} acquires a
unique ability to predict spectrum shape at any tempera-
ture from the experimental IR (or Raman) spectrin at
oniy one temperature. On the other hand, this equation
gives a recipe for calculating the functions E(v) and then
W (i} from experimental spectra and reveals a new poss-
ibilities for applying fluctuation theory to real
systems. This recipe has significan{ advantage in com-
parison with that of Brates [9], who developed a general
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equation {l1). However, he proposed determining the
functions E{y) and W(v) by expanding them into
Tayior series in the vicinity of the energy function mini-
mum. This approach is not constructive for water
spectra because the statistical contours here are far
from a Gaussian distribution and are more likely of a
bimodal character. Describing these modes separately
would turn the Bratos formalism into a variant of the
mixed model. The Zhukovsky recipe (equation {4)) pro-
vides a way to determine the basic functions E(v) and
W (v} independently of their forms and the positions of
the extrema.

The simplifying assumption (3) makes it possible to
recalcuiate band shapes rather well over the temperature
range 10-80°C [6, 71, but results in substantial overesti-
mation of the intensity of the high frequency wings com-
pared with experiment at higher temperatures {7]. The
reason is a considerable contribution of the “tails’ of the
homogeneously broadened contours (v —»'} com-
posing the band. These tails, which do not correspond
te any real oscillators in the statistical distribution
P(v, T) (that cannot have frequencies v’ > 1), are expo-
nentially strengthened by the Zhukovsky procedure
{equations (1) and (4)) when recalculating a spectrum
for higher temperatures. The only way to avoid this
imperfection is to take into account the contribution
of the o{v — v} contour.

Such an analysis was performed in {8] for the tempera-
ture transformation of the isotropic Raman spectrum,
However, in that analysis is the problem, the inverse of
equation (2), was not solved as a mathematical task,
because the desired function P{v} was found not by
the direct solution of the integral equation (2} but by
modeliing it with the help of two Pearson distributions
whose parameters were fitted to reach the best agree-
ment with the experimental spectrum after the convolu-
tion (2) with the line contour of the individual oscillator
w(v - '), This approach made it possible to ignore
empirical relation (5} and to calculate independently
the functions E(v} and W{v). As a result, taking into
account the finite width of the individual oscllator line,
we managed to achieve a much more precise description
of the temperature evolution of the band of OH vibra-
tions over the entire experimentally studied temperature
range.

The next step in studying this problem was the paper
of Georgiev et al. {10}, which was the first to distinguish
the contribution of the F{v} intensity factor, basing on
the IR spectra of HOD molecules isotopically diluted in
,0. The authors nwmerically solved the inverse to the
equation (2) problem on finding P{v} for ten tempera-
tures T from 22°C to 86°C. Equation (2) was deconvo-
luted with the help of the known technigues of direct
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contours are very similar to those in [8] but differ in
detail. The reasons may be as follows. The Fourier
deconvelution method fails to provide the positive defi-
nite solution with a Hmited determination region (a
break at frequency 1, ). Therefore, an additional limita-
tion was applied in {10} to satisfy these two conditions:
the final solution was of a form almost identical with
that modelied by us [8] (the sum of two Pearson distri-
butions, modified by polynomials). Further, there is
some arbitrariness in the choice of the parameters of
the Pearson distribution and convolving function
(v — v’} in our earlier paper, and somewhat dramatic
increase in the (v — v’} width with increasing tempera-
ture postulated in [10].

The purpose of this paper is to turn back to a stricter
ievel of calculation, performed in [8] almost intuitively,
and to construct a complete Zhukovsky model for liquid
water with the analytical description of all the functions
involved, This will make it possible to calculate the other
water characteristics, i.e., contour shapes in R spectra
and configuration contributions of hydrogen bonds to
thermodynamic functions.

2. Herative deconvolution as 2 method for solving the
inverse problem of integral convolution
A conventional method for solving the inverse prob-
lem of integral convolution of equation (2) type,

1
S{y) = J, PloYp(v - v'ydv' = Conv (P(1)), (6)
¥

ie., determination of function P({v} = Deconv(S(v))
from the experimental S{v) curve and known convolving
function (v ~ v’} within the finite limits (v, 1), is the
inverse Fourier transform of the guotient from the divi-
ston of the Fourier image of S{v} by a Fourier image of
w(r). However, in actual practice, this method fails to
provide a positive definite solution and leads to oscil-
lating components {12, 13} It is a non-trivial problem to
correctly exclude these demerits in the framework of a
given method. We have developed a novel technique for
solving the inverse problem fo equation (2), described in
detail in [11]. Its essence is the following.

As a zero approximation we take PP(v} = S{v), ie.,
the experimental spectrum liself (which is already the
convolution of the desired P(v) with »{r})), and con-
volve it once again with p{v}). Then we calculate the
misfit function §' (v} as a difference between the experi-
mental S(»} and the curve resulting from P°(») convolu-
tion. Then P'(v) = P%(v} + 6'(v) is taken as the first
approximation for the statistical contour P(v}. In addi-
tion, we may correct it so that P'(v) should be every-
where non-negative and should be zero at high
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rule, insufficient and the procedure can be repeated.
After a few iterations (conventionally, about 5-10
times), the checking convolution of P'(v} with {v)
would be almost identical to the experimental spectrum.
Further iterations result in negligible change in $'(v). It
means that P{v) may be considered as the achieved sol-
ution of the inverse problem (equation (6)).
The general form of the procedure is {i = 1,2,.. )

Pl + 8(v) i P(v) 2 0and v < 1y,

Piu) = . (7a)
0 if P{vy <Qorv>u,.
{7b)
8 (v} = S{v) — Conv' ' (). {1c)
Conv' {v) = J : P Yo(v — v dv'. (7d)

The initial condition is
Po(v) = S(v). (8)

Note that two different limitations in equation {7h} may
be used separately if, e.g., it is necessary either to pro-
vide the non-negativity of the desired P(1-} without lim-
iting its definition area or, on the other hand, to set the
definition area without requirements on the constancy of
sign.

When applying this procedure to real spectral prob-
lems it is important to bear in mind that the exact form
of p(v) function is, as a rule, unknown. What wili be the
result if the half-width of convoluting function (v} is
set incorrectly? Let us tllustrate the problems arising. As
the convolving function we take the Lorentzian

Ly — ') = 2H/{z[H* +4(v - V'}"]},  (9)

with halfewidth Oy, = H. Figure 1 demonstrates the
resuits of the deconvolution of the same experimental
contour S{v} using the Lorentzian with different values
of Dy = (a) 25cm™ and () 35cm~’. Tt is seen that
smalier value of the Ay, causes a sharp peak at fre-
quency 15, (Hne 2 in figure 1{a)) whose infensity increases
with increasing number of iterations trying to compen-
sate (without any success) for the small deficit of inten-
sity at the high frequency wing of checking convolution
(tine 1 compared with symbols in figure (a)). On the
other hand, larger value of Ap;,; leads to substantial
narrowing of the desired P(v} distribution (line 2 in
figure 1{b)) so that it tends to zero at frequencies lower
than »,. In this case, the intensity of the high freqguency
wing of the checking convolution (line 1 in fgure (b))
slightly exceeds the experimental one (symbols). Only
Ay = 30 em™' gives (after deconvolution of the
8(v)) the P() contour with the desired properties: it
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Figure . Deconvolution procedure and search for the cor-
rect half-width of the convolving lLorentzian function:
symbols, experimental Raman spectrum S{») of HOD
moelecules at 30°C {14} line 2, result of deconvolution,
P{1) = deconv {S{v}; line 1, its proving convelution with
the same Lorentzian, Peconvolution by the Lorentzian of
a half-width (@) H =25cm™", and (b)) H = 35em™'. The
number of iterations is 8. Al calculations were performed
using a set of discrete points separated by H0em™. In
particular, integration was substituted by summation.

it is 30cm™! precisely that we may consider the ‘true’
value for the half-width, Ay, ». Thus our deconvolution
procedure {(combined with the physically reasonable
requirements on the P{r} shape) contains in itself
some criterion for selecting a deconvolving function.

This conclusion was proved independently by a direct
model calcutation, First, we postulated the shape of the
statistical distribution P{v) tending to zero at v =y
and convoluted it with the Lorentzian with half-width
H, to obtain the model ‘experimental’ spectrum S{v}.
Then we subjected this spectrum fo the deconvolution
procedure stated above with various Lorentzian half-
widths H. We found that a false peak at frequency »,
{as in figure 1(a)} appeared always for H < Hy, and the
deconvoluted contour vamished at frequencies smaller
than v, (as in figure 1(d)) for H > Hy. These calculations
were performed for several values of Hy and H. The
larger were Hy and |H — Hyl the larger were the features
discussed.

3. Calculation of the statistical distribution of the
frequencies of liquid water OH vibrations from Raman
spectra

We used the isotropic component of the Raman
spectra of HOD molecules difuted in D,0, [ (v}, as
mnitial data A+ 100 S0 and N the Scherer of af (143

spectra were used, and at 200 °C the Ratchiffe and Irish
spectra [135}, as all these were obtained almost at the
same density 1gem™, For our calculations, only the
tabulated data are suitable to provide the proper accu-
racy. They are taken from [14], supplementary materials
and from tables kindly donated by the authors of {15].

The statistical contour P(v) is taken as a frequency
distribution of the matrix element square of the polariz-
ability tensor trace (b) for a given vibration. Its relation
to the experimental spectrum [, () obeys the equation

1,() = Conv [P(v}{(v}],

where (v} = (v — %)4{1 — eXp {“‘“hV/kgT))MI and 2
is the excitation radiation frequency (the argon ion
iaser line, 4880 A, in the papers cited). As the deconvo-
jution function w{¥), we used in [8] the Lorentzian with
half-width Agy)y = 30 em™ (the same for all tempera-
tures) corresponding to the IR spectrum of HOD mel-
ecules dissolved in CCly at room temperature. {(In non-
polar solvents, the water molecules exist as monomers
taking no part in hydrogen bonds and being thus spec-
troscopically identical; therefore, the statistical distriby-
tion P(v} reduces to the delta function and S{v) reduces
to (1)) However, when deconvolving the IR spectra in
the temperature range of 22-86°C, Georgiev e al. [10]
assumed that the half-width of convolving function {v)
increases with temperature according to

Ay = 2712 exp ({Egn) /kaT), {10)

where {Epg) = —12.725kImol™" is the mean energy of
hydrogen bonds in the ensemble. Over the temperature
range studied by us this could lead to an increase in
Ay from 18em™ (10°C) to 100om™ (200°C) that
casts some doubt on our previous deconvolution results
{8] with the temperature independent convolution func-
tion. Therefore, we performed trial calculations varying
the Ay value analogously to that shown in figure 1,
for experimental contours from 10°C to 260°C. More
or less satisfactory results are obtainable, with reason-
able vatiations of the background, if
27em™! < Agys < 33cm™ in all cases. The best results
were recorded for Qg = 30cm ™’ (as figure 1 illus-
trates fer 50 °C). This value will be used further for all
temperatures. Note that the width of the homogeneously
broadened contour {1} depends on the relaxation pro-
cesses common for any Hquid rather than on hydroges
bonding. Besides, the resolution power of the spectro-
meter also contributes to it. Therefore, there is no
obvious sense in relating the temperature dependence
of the homogeneous width to the hydrogen bond
energy, as assumed in expression (10).

Figure 2 shows the statistical frequency distributions
P{v,T) calculated by the above method from experi-
mental gnectra The aveelient auslity of the eabitinn of
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B{v) from IR and Raman spectra
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Fignre 2. Statistical frequency distributions P{e, T) of OH
vibrations in liguid water: lines 1-4, calculated by us
from experimental Raman spectra at 10, 50, 90, and
200 °C, respectively; symbols, simitar statistical contours
calculated according to [10] from IR specira.

the inverse problem is confirmed by the results of
checking convolutions ${v,T) of the contours found
P(»,T), with the Lorenmtzian with a haif-width of
30em™'. They coincide exactly with the experimental
Raman spectra (even better than the symbols and lines
in figure 1(a, b)). Figure 2 compares also our statistical
contours with those constructed in {10] based on the IR
spectra. Although there are some systematic differences,
these two sets of statistical contours are, as a whole, in
good agreement with one another at all temperatures.
Such agreement is by no means trivial, because they
were calcunlated on the basis of experimental IR and
Raman spectra that differed strongly in the shape.

4, Calculation of the temperature invariants of
Zhukovsky theory

Using statistical distributions P(v,T;) for four tem-
peratures (i=1,...,4) we are able to calculate the
two temperature independent functions E(v} and W{r)
of Zhukovsky theory as follows. First, we calculate
energy functions (to within the unknown constanis Cy)
according to formuia (4) from each pair of four statis-
tical contours, i <j= 23,4

Eglv) = kgT 1 /(T ~ T [P{(v,T;} /Py, THl (1)

Al the six curves obtained behave rather irregularly,
evidently because of difficulties in the separation of the
experimental contours of the HOD molecules against

the background of bands of DO molecutes prevailing
in tha enlistinn Thie leads ta oreat relative errors in

the remote contour wings {at »> 3650cm™ and
v < 3200cm™"). The curve (E{v)) averaged overall is
more relable and is shown in fgure 3(q) by the dashed
fine 1.

The last step in the derivation of E(v) function is a
natural constraint that for small frequency shifts it
should reproduce the empirical Badger-Bauer correla-
tion (equation {5}) and become zero with vy tending to
1, = 3707 cm . This function can be constructed using
the expression {x =y, — v)

_ —bx
T (A - DT /)

E{x} (12}

Two coefficients of this formula may be taken from
experiment. The value of b is determined by the
empirical Badger-Bauer correlation into which equation
(12} transforms for small x. For water, we obtgin
b = 14calmol ! om = 58.576 Jmol™} cm. The optimum
configuration of hydrogen bonds between water mol-
ecules is likely to be realized in ice at 8 K. Therefore,
for the 1, frequency corresponding to the minimum
value of hydrogen bond energy K., we assume the fre-
guency of OH vibrations of HOD molecules in ice at
0K. Extrapelating the data of [16] to T =0K, we
obtain v, = 3264.7cm™!. Coefficient 4 can be found
by comparing formula {12} with (E{v)) and taking
into account the relationship

A= (1 Egin/ (%)) 7 (13)

where x, = ¥, — V.

We assumed E., = ~22.0kJ mol ™ {which gives
A = 6.629). Figure 3{a) shows that, with such a choice,
expression {12} provides a satisfactory approximation of
{E{v)} if the frequency intervals corresponding to the
uncertain wings of stretching band are neglected. The
E.;, value means the optimum energy of the hydrogen
bond between water molecules, and a value of
~22kImol™! assumed by us is close to the H bond
energy in ice of —23.68 kI mol™! determined as half the
sublimation energy of ice at 0K {17]. Expression {12)
was used in [§,10] with somewhat different parameter
values.

Thus, we use equation {i2) with the chosen par-
ameters to describe the relationship between the H
bond energy and the vibration frequency of the OH
osciflator engaging in it. This function is depicted in
figure 3(g) by the solid line 2. It is seen that, due to
the presence of a minimum, this form of E{v), in con-
trast to equation (5), leads to a double-valued depen-
dence of v on F. This should be considered as a fact
unambiguously following from experiment. We plan te
describe the conseauences m a subseguent paper con-
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Figure 3. Construction of two iovarant functions of
Zhukovsky model. (¢} Relationship beiween hydrogen
bond energy and OH oscillator frequency: dashed line 1,
average of K {v) curves calculated using expression (11)
from all 6 pairs of statistical contours over the tempera-
ture range 10-200°C; and solid line 2, approximation of
energy function by equation (12) shifted by +12 kImol ™.
{F) Pependence of the function describing the state degen-
eracy of the OH oscillator frequency: dashed lines, W (1)
curves calculated using equations (14}, {15) for 4 tempera-
tures; and solid line, their mean, W{v).

cerning the H bond energy distribution and thermody-
namic functions.

Now we can determine the W{v) function. To this end
we first calculate four functions W{(v) on the basis of
the defined E{r) and four statistical contours P(i, T):

Wiv) = P, T}/ exp[-E(}/(kT)].  (14)

According to equation (1), these functions differ from
the desired W {v) by a factor Q(T;}). The area normalized
Wi{v) curves

W, () = Wi () / [[wiwa a9

By

almost coincide with one another, as shown in figure
3(by. This confirms Zhukovsky’s hypothesis about
the temperature invariance of the functions E{v} and
W{v).

The meaning of normalization (15} is transparent.
Equation (1) shows that with T — oo, P, T)—
O (T YW ({v). Thus, the function describing the degen-
eracy of the hydrogen bridge configurations, giving rise

Fry A oHTIOE RS e Y fr e e 1vr 1o Pt wrth e

statistical contour at infinite temperature. It is clear
becanse at T -+ oo all possible configurations shouid
have equal probabilities. To satisfy the obvious require-
ment

}% Pv)dv = I, (16)
L]

we should exclude the last uncertainty in the determina-
tion of fanction W{») assuming Q(T — o) = 1. This
gives normalization (15).

As invariant W (i) function we take the average of
four calcnlated W {1} curves. Its logarithm is shown in
figure 3(5} by the solid line. Any detailed form for func-
tion W{v} is highly speculative and may be approxi-
mated analytically only with great difficulty. To
calculate the form of the statistical distribution in
detail the exact values of W{r) should be used, as
given in table 1.

For some purposes, however, it may be useful to
employ the analytical representation of W (i) function.
in this case, the following complex dependence may be
proposed (v in cm"”}):

W(v) = exp |~ exp (I (»)})], (17)
Y(r) = 1.55exp {~[(3735 ~ v)/50]*}
4 2.334exp {~1(v ~ 3193)/44012%}
— [{v — 3603} /410]
x exp {—{(v — 3603)/75]" 7} +0.03.  (18)

This representation allows one to determine, e.g.. the
frequencies of the statistical contour maximum at dif-
ferent temperatures. The Zhukovsky formalism may be
used readily to find the condition for this maximum,.
Equating the frequency derivative of expression (1) to
zero we obtain

din W(r) 1 dE(v)
dv kT dv

(19)

Figure 4 shows the curves corresponding to the func-
tions on the right- and left-hand sides of this equation,
the former being calculated by approximation {18). The
intersection of these curves determines the position of
the extremes of the statistical contour P(r). It is seen
that mear 80°C {more accurately, in the range 333~
339K) the contour should have three extremes
{figure 4) that corresponds to a bimodal form of this
contour.

The expansion of energy function {12) into a series
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Table 1. Dependence of the degeneration function Wivgy) of hydrogen bond configurations
corresponding 1o energy E{voy) on the stretching frequency voy in a liquid water.
vor/em™! —iog (W) vos/em™! ~ 10g9(W) vou/om™! ~log;,(W)

3900 3.66371 3240 4.58564 3480 2.32548
3010 372126 3250 4.54072 3490 223292
3020 378405 3260 448569 3500 214179
3030 3.84562 3270 442420 3510 205217
3040 3.89088 3280 435712 3520 1.963 99
3050 393384 3290 428297 3530 1.87685
3060 3.98653 3300 420108 3540 1.790 98
3070 404767 3310 4.1122% 3550 1.705 64
3080 411459 3320 401784 3560 1.61971
309¢ 418528 3336 3151852 3570 1.53232
3100 425789 334¢ 3.814%4 3580 144311
3116 432968 3350 370804 3590 1.35239
3120 439719 3366 3.59893 3600 1,26143
3130 445832 3376 3.488 27 3610 117311
3140 4.51211 338¢ 337612 3626 1.09243
3150 4.55772 3390 3.26277 3636 1.027 56
3166 4.59447 3400 3,14952 3640 0.988 42
3170 4.62285 3410 3.03733 3850 0.98565
3180 4.643 52 3420 292715 3660 102671
319¢ 465578 3430 282014 3670 1.12247
3200 465909 3440 271619 3680 1.28641
3210 4.65397 3450 2.61466 3690 1.55600
3220 4.64076 3460 231878 3700 209584
3230 461861 3470 241952 3707 nfinity
0,03 o P(,T) & W (tpy) exp [~ (v — 14,)2/207}
i with dispersion o7 = kgTxH({A — 1) /|Epy]. For the
statistical contour half-width, with our parameters, we
0,02+ N tain

Both sides of equation (19)

e,

It

re 4. Mechanistn of formation of statistical contour

3200 3300 3400 3500 23600 3700

vy frequency / em’”

extreme: thick bne, dln W{v}/dv functions calculated
by approximation (17);
{1/kgTYdE(v}/ dv at different temperatures.

and thin lines,

E{V)mEmn{I_%ifi(V“Vm)z
A—~1HA~ 5

functions

{V—-vm)3+‘--}. (203

h respect to equation (i), we find that at very low
peratures, near 0K, the statistical contour is the

eeian dictrihution

Avypfom™!y = 2.3550 = 8.535\/T(K).  (21)

Indeed, the fluctuation concept of hydrogen bonding
developed for the liquid state fails for ice. According
to {16}, the half-width of the stretching OH band of
HOD molecules in polycrystalline ice Th is almost tem-
perature independent in the range 0-100K, and
amounts to 26-27cm . This width is much greater
than that in the proton-ordered ices IT and IX [18, 19],
and results from proton disorder in Th ice which is
‘frozen in’ the ice structure and is femperature indepen-
dent. According to expression {21), this disorder corre-
sponds to liguid fluctuations with a temperature of
about 10K,

5. Reconstruction of temperature dependence of the
statistical contours and of stretching band shapes
Using Zhukovsky formalism, we may now reconstruct
the entire set of experimental data. For comparison with
experimental spectra, the calculated statistical contours
Pl TY ahimntdd Be croavvalved saccarding f0o ecsuatinm £°0
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Figure 5. Comparison between the calculated and experi-
mental isotropic Raman spectra of HOD molecules:
solid lines, calculation based on the asswmed model of
statistical contours after their convohution with the
Lorentzian of a half-width of 30cm™’; and dotted lines,
experimenrtal data. From left to right: (@) from [}4] at 10,
50 and 9¢°C and from {15] at 200°C; and (b} from {15] at
25, 100 and 300°C.

with the Lorentzian of a half-width of 30cm™ used by
us in the deconvolution procedure. The results are given
in figure 5. }t is seen that at 10, 50, 90 and 200°C the
imitial spectra are reproduced well figure 5(a)). The
spectra of Ratcliffe and Irish at 25°C and 100°C are
poorer (figure 5()) but, as a whole, gquite satisfactory
{the statistical spread in points in these spectra is much
greater, according to the tables we have, than that in the
data of Scherer et al. in figure 5(a)). Also only the spec-
trum at 300 °C in figure 3(b) is described inadequately by
the fluctuation theory. Probably, this is due {o the fact
that experiments at this temperature were performed at
a dengity of O.?ngcm“3 {15}, whereas all the other
spectra and the E(v) and W{v) functions correspond
to a density of about 1gem™. Thus, the fluctuation
concept of hydrogen bonding is in good agreement
with Raman experimental spectra of HOD molecules
in 2 liguid at a2 ‘normal’ density over the temperature
range 0-200°C,

The Zhukovsky formalism can predict the tempera-
ture transformation of the statistical contour over a
wider temperature range. Figure 6(b) shows such a
trancformation from —172°C un to 1000 °C. Hieh tem-

3900 2200 3300 3400 380 360G 3700
.
g 1,04 a
o 0,84
=
e 054
=,
-
S
L 0,4 4
¥
& 2,24
0,0
8 4 h
2 5
s
4
2

oo oo a0 sao0 ka0 3800 3700
.t
v frequency / cm

Figure 6. Origin of temperature evolution of a statisticai con-
tour and its extrapolation to a wider temperature range.
{g) The mechanism of statistical contour formation: two
cofactors determining the P{v) shape according to equa-
tion (1), the Boltznann exponent at T = —173, 0, 200,
and 1000 °C (curves 1,4,7,8 at the jeft) and the function
of state degeneracy W{r)} {curve 9 at the right). All curves
are normalized in height to unity. (&) Statistical contours,
being the product of above cofactors calcnlated for —173,
—100, —50, 0, 50, 100, 200, and 1000°C {curves I-8,
respectively). The contours are normalized in area to
Bnity.

peratures can correspond to a supercritical fluid and low
temperatures to supercooled water and amorphous ice.
When comparing these contours with experiment one
must convoluie them with the Lorentzian and remember
that the density in an experiment would be constant at
about Igem™>, '
Figure 6{a) shows two cofactors of equation (1) whose
product is P{v). It is rather curious that at normal tem-
peratures the major part of the frequency distribution is
formed in the region of overlap of the wings, both the
Boitzmann exponent and the function W{v); only with
the temperature approaching 0K and infinity does P{y)
tend fo this exponent and to W{v), respectively. It is
remarkable that at high temperatures statistical distribu-
tion does not show total disruption of the hydrogen
bonds {no & function at the frequency about ). In
fact, the high temperature contour (which is identical
with W{v)} has the form of a sufficiently broad distribu-
Hion with 2 maximim at ahont 1645 em ™! fiable 1) that
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may be assigned to the ensemble of weak, bent hydrogen
bonds. This fact resulis, of course, from the high density
of substance that gives no possibility for molecules to
move apart even at high temperatures. These weak
hydrogen bonds cannot by any means be considered in
the framework of fluctuation theory as a separate spe-
cies: they are an inseverable element of the single con-
finuous distribution of H bond configarations in Hguid
water,

6. Cenclusion

The main results of this study may be summarized as
follows.

The novel deconvolution procedure is used to uni-
formly (not ad hoc) derive statistical distributions of
vibration frequencies, P{y,T), from a set of experi-
mentat spectra. The width of homogeneously broadened
OH oscillator lines composing a wide Raman band was
found to be independent of temperature up fo 200°C
and equal to the width of the stretching line of a water
molecule in inert solvent {with no H bonding). The relia-
bility of the calculated contours P{v,T) is justified by
their similarity with those derived independently from
IR spectra and also by the resuits of checking convolu-
tions, S(», T}, which exactly coincide with the experi-
mental isotropic Raman spectra.

The problem of determining the E{r) and W{v) func-
tions of the Zhukovsky formalism on the basis of statis-
tical contours derived from the experimental spectra
refers to a category of ‘incorrect’ inverse problems that
do not have, from a mathematical viewpoint, the unigue
strict solution. The method proposed here gives one of
the possible approximate solutions. However, this sol-
ution is adequate for our main purpose, i.e., to demon-
strate the effective work of the developed formalism in
calculating the shape of the contours of OH vibrations
of HOD molecules over a wide temperature range.

The calculated E{v} function has a minimum that
leads to a double-valued dependence of the OH oscil-
lator frequency v on the H bond energy F, in contrast to
the simple Badger—Bauer relation. As a resuit, the same
value of E may be connected with {wo values of vibra-
tion frequency, less and greater than v{E ;).

The function describing the degeneracy of the
hydrogen bond configurations, W{v), is identical with
the statistical contour at infinite temperature. It reflects
the fact that at T -+ oo all possible geometries of
O-—H---O bridge should be equally probable, despite
the differences in H bond energy. Even at very high
temperatures there is no evidence of breakage of the
hydrogen bond network. In fact, P{v) conserves the
form of a rather broad distribution near 3645cm™!
instead of a sharp line at the free OH-group frequency.

Thaee fumal) hodragen honde are dAserrithad By the came

formulas as other (stronger) ones, and thus represent the
integral element of a uniform continuous distribution of
H bond configurations in liquid water. At temperatures
somewhat lower than the boiling point the theoretical
spectra should have three extremes that corresponds to a
bimodal form of isotropic Raman experiments.

A quantitative description of both the shape and tem-
perature transformation of the experimental spectra of
HOD molecules in a liquid over the range 10-200°C
achieved in this paper on the basis of fluctuation
theory proves that it is the continvum model that cor-
rectly describes water. However, the numerical values of
the E{v) and W{v) functions obtained here are true only
for water at a ‘normal’ density. It is planned {o use these
in further papers to describe the IR spectra and thermo-
dynamics of hydrogen bonds in water. For other
systems with hydrogen bonds {or water at another den-~
sity), the configuration space for H bond geometries will
differ from that for water at § gem™ and therefore the
E{v} and W({v} functions may be changed. Unfortu-
nately, at present they cannot be calculated theoretic-
ally, but may be reconstructed from empirical spectral
data by the methods elaborated here. It would be very
interesting to investigate the behaviour of the E{v} and
W () functions under different situations; this may be
done on the base of speciral experiments performed at
various temperatures and under isochoric conditions.

This work was partially supported by Grant RFBR
01.03-32811,
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