На правах рукописи

БЕРЕГОВАЯ Ирина Владимировна

АДИАБАТИЧЕСКИЕ ПОВЕРХНОСТИ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ – ОСНОВА КВАНТОВОХИМИЧЕСКОЙ ИНТЕРПРЕТАЦИИ СТРУКТУРНЫХ ОСОБЕННОСТЕЙ И РЕАКЦИОННОЙ СПОСОБНОСТИ ОРГАНИЧЕСКИХ ИОН-РАДИКАЛОВ И ИХ АССОЦИАТОВ С НЕЙТРАЛЬНЫМИ МОЛЕКУЛАМИ

1.3.17 - химическая физика, горение и взрыв, физика экстремальных состояний вещества

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора химических наук

Новосибирск - 2024

Работа выполнена в Федеральном государственном бюджетном учреждении науки Новосибирском институте органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

Научный кон- сультант	Щёголева Людмила Николаевна доктор химических наук, в.н.с. НИОХ СО РАН			
Официальные	Соломоник Виктор Геннадьевич			
оппоненты	профессор, доктор химических наук, в.н.с. кафедры физики ФГБОУ ВО "Ивановский государственный химико- технологический университет", г. Иваново			
	Фельдман Владимир Исаевич			
	профессор, доктор химических наук, профессор кафед-			
	ры электрохимии, заведующий лабораторией химии вы-			
	соких энергий Химического факультета ФГБОУ ВО			
	"Московский государственный университет имени М.В.			
	Ломоносова", г. Москва			
	Шаинян Баграт Арменович			
	профессор, доктор химических наук, г. н. с. лаборатории			
	элементоорганических соединений ФГБУН Иркутский институт химии им. А.Е. Фаворского СО РАН, г. Ир- кутск			
Ведущая орга-	Федеральное государственное бюджетное образователь-			
низация	ное учреждение высшего образования "Иркутский госу- дарственный университет", г. Иркутск			

Защита диссертации состоится "05" июня 2024 года в 15-00 часов на заседании Диссертационного совета 24.1.150.01 при ФГБУН Институте химической кинетики и горения Сибирского отделения Российской академии наук (ИХКГ СО РАН) по адресу: 630090, Новосибирск, ул. Институтская, д. 3, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ИХКГ СО РАН и на сайте http://kinetics.nsc.ru. Текст автореферата размещён на сайте Высшей аттестационной комиссии при Министерстве образования и науки Российской Федерации по адресу: http://vak.minobrnauki.gov.ru.

Отзывы на автореферат в 2-х экземплярах просим направлять по адресу: 630090, г. Новосибирск, Институтская, 3, ИХКГ СО РАН, учёному секретарю диссертационного совета 24.1.150.01; e-mail: ref_dissovet@kinetics.nsc.ru.

Автореферат разослан " " _____ 2024 года

Учёный секретарь диссертационного совета, кандидат химических наук

Подриения И. П. Поздняков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Управление химическими процессами и создание технологий получения востребованных продуктов и новых материалов невозможно без детального понимания механизмов химических реакций. В этой связи одной из основных проблем современной органической химии является изучение короткоживущих реакционных интермедиатов, их строения, свойств и взаимодействия с молекулами окружения. Современное развитие вычислительной техники делает квантовую химию эффективным инструментом для подобных исследований.

Ион-радикалы (ИР) органических молекул являются интермедиатами многих химических и биохимических реакций. Одноэлектронное окисление и восстановление представляют собой эффективный способ активации молекул к химическим превращениям.

Высокая химическая активность ион-радикальных частиц в значительной мере обусловлена возможностью, разнообразием и легкостью их структурных изменений. Для теоретической интерпретации спектральных особенностей и реакционной способности структурно нежестких объектов, как правило, недостаточно рассмотрения только одной стационарной структуры, пусть даже минимальной энергии – необходимо исследование поверхности потенциальной энергии (ППЭ) или её фрагментов. Более того, поскольку ситуация изолированной частицы достаточно редко реализуется в природе или условиях эксперимента, желательно, а часто и необходимо, непосредственное включение в расчеты молекул среды, противоиона, партнера реакции и др. Подобные ресурсоемкие исследования стали возможны сравнительно недавно.

Вышеизложенное обосновывает актуальность представленных в диссертации систематических исследований электронного строения и потенциальных поверхностей органических ИР и их ассоциатов с молекулами окружения.

Степень разработанности темы исследования. Изучение потенциальных поверхностей ИР органических молекул является сравнительно новой темой. Подобные расчеты для больших систем с открытой оболочкой были просто невозможны до появления мощных современных компьютеров. Да и подход к описанию свойств молекулярных систем на основе рассмотрения только структуры минимальной энергии оказался весьма устойчивым. В

силу этого степень разработанности темы к началу работы над диссертацией не была, да и не могла быть высокой. Тем не менее, уже были (Щёголева Л.Н. с соавторами, 1984-2007) установлены причины и закономерности возникновения разнообразных структурных искажений в ИР ароматических и ненасыщенных соединений; показано, что ППЭ низкосимметричных производных ян-теллеровских (ЯТ) ионов могут сохранять вид поверхностей псевдовращения; проанализирована связь структурных искажений с перераспределением электронной плотности; определены основные механизмы молекулярного распада галогенароматических анион-радикалов (АР) с отщеплением галогенид-иона. Отвечая на одни вопросы, эти исследования породили другие – например, о влиянии сольватации на строение ППЭ или о возможности сохранения структурной нежёсткости ИР по отношению к псевдовращению при его взаимодействии с молекулами окружения. Насколько нам известно, последний вопрос до работ соискателя с соавторами в литературе не поднимался.

Цель работы: систематическое изучение методами квантовой химии органических ион-радикалов – короткоживущих реакционных интермедиатов, их строения, свойств и взаимодействия с молекулами окружения.

Были поставлены и решены следующие основные Задачи:

- 1. Продолжить изучение ППЭ АР полифторароматических соединений с целью анализа влияния на строение ППЭ симметрии молекулы-предшественника, растворителя, введения многоатомного заместителя, расширения ароматической системы. Дать интерпретацию спектральных и химических свойств изученных частиц, определяемых строением ППЭ.
- 2. Рассмотреть ППЭ катион-радикалов (КР) ряда циклических алканов на предмет обнаружения связи строения ППЭ с особенностями парамагнитной релаксации этих частиц.
- 3. Установить механизм мономолекулярной фрагментации с отщеплением фторид-иона для АР широкого круга полифторсодержащих ароматических соединений. Объяснить закономерности восстановительного гидродефторирования их нейтральных предшественников.
- 4. Изучить влияние ион-молекулярной ассоциации на строение и структурную нежёсткость ИР ароматических молекул. Рассмотреть потенциальные поверхности образующихся ассоциатов.

5. Найти пути трансформации первичных катион-радикальных частиц, возникающих при ионизации диметиловых эфиров полиэтиленгликолей (глимов) и этиленкарбоната, согласующиеся с данными экспериментов.

Научная новизна. Впервые детальные исследования адиабатических ППЭ легли в основу систематических исследований структурных особенностей и физико-химических свойств ИР широкого ряда органических соединений. Полученные результаты показали эффективность такого подхода, существенно расширив общие представления об этих объектах и позволив дать теоретическую интерпретацию большому числу экспериментально наблюдаемых фактов и закономерностей. Сделанные в ходе работы теоретические предсказания, определив интересные для изучения объекты, привели к новым экспериментальным исследованиям и стимулировали модернизацию установки для проведения экспериментов методом ВМЭ (времяразрешённого магнитного эффекта).

Значительное число ион-радикальных частиц и ассоциатов, рассмотренных в диссертации, зафиксировано нашими соавторамифизиками (ИХКГ СО РАН) впервые. Соответственно и данные о свойствах этих объектов не имеют аналогов в литературе. Однако нам удалось получить новую информацию и об объектах, давно и тщательно изучаемых, а именно о нейтральном и катионрадикальном димерах бензола.

Мы полагаем, что обладаем приоритетом в таких вопросах, как сохранение структурной нежёсткости ЯТ ИР при их взаимодействии с молекулами окружения и роли псевдовращения в селективности мономолекулярной фрагментации АР полифторароматических соединений. Новым является и вывод о необходимости учёта слабых межмолекулярных взаимодействий при рассмотрении процессов первичной ионизации в полярных жидкостях.

Теоретическая и практическая значимость.

Теоретическая значимость работы заключается в выявлении глубокой внутренней связи структурной нежёсткости (ионрадикальных) молекулярных систем с их химической активностью и механизмами превращений и отработке подходов к изучению этой связи. Получение информации о строении и свойствах короткоживущих активных частиц, установление механизмов их превращений и факторов, влияющих на реализацию этих механизмов – всё это, являясь предпосылками целенаправленного синтеза, придаёт нашим исследованиям практическую значимость.

Методология и методы исследования. Квантовохимические расчеты, главным образом, проводились в рамках теории функционала плотности (ТФП, DFT), с использованием стандартных функционалов (B3LYP, BHHLYP, ω B97X-D и др.) и базисов. Расчёты включали локализацию стационарных точек ППЭ, определение их типа и установление связей между ними. В отдельных случаях были выполнены расчёты методами ОО-RI-MP2 и EOM-IP-CCSD.

Положения, выносимые на защиту:

- 1. ППЭ ИР многих циклических органических молекул, как насыщенных, так и ненасыщенных, имеют сложное многоямное строение, что находит отражение в физико-химических свойствах этих объектов. Несмотря на вибронную природу таких ППЭ, пути обхода конических превращений могут быть рассчитаны в рамках адиабатического приближения.
- 2. Скорость спин-решёточной релаксация КР циклических алканов связана с их структурной нежёсткостью по отношению к псевдовращению.
- Экспериментально наблюдаемые закономерности восстановительного гидродефторирования полифторароматических соединений обусловлены закономерностями мономолекулярной фрагментации промежуточно образующихся АР.
- 4. ЯТ КР бензола сохраняет структурную нежёсткость по отношению к псевдовращению при образовании ассоциатов с молекулами растворителя или нейтральным предшественником – молекулой бензола.
- 5. Внеплоскостные искажения, присущие АР полифтораренов, препятствуют образованию димерных структур при взаимодействии этих АР с нейтральными молекулами-предшественниками.
- 6. Предложенная квантовохимическая модель ионизации этиленкарбоната позволяет дать непротиворечивую интерпретацию экспериментальных результатов, полученных методами ВМЭ и импульсного радиолиза.

Достоверность результатов обеспечена применением современных методов квантовой химии, проведением расчетов разными методами, тщательным анализом результатов расчётов и обязательным их сопоставлением с имеющимися экспериментальными данными. Корректность описания потенциальных поверхностей подтверждается адекватностью интерпретации спектральных данных ЭПР (включая температурную зависимость спектров) на основе расчётов магнитно-резонансных и энергетических параметров для стационарных структур этих ППЭ.

Апробация работы. Работы выполнялись в соответствии с программами и планами НИР НИОХ СО РАН, их результаты включены в отчеты института. Исследования поддерживались грантами РФФИ (08-03-00495, 13-03-000427, 17-03-00564). Доклад на основе публикаций [2 - 5, 7], представленный соискателем на конкурсе научных работ НИОХ СО РАН 2015 года, занял первое место. Материалы диссертации докладывались на российских и международных конференциях – см. Публикации по теме диссертации, стр. 45.

Личный вклад соискателя состоит в постановке цели и выборе задач представленного теоретического исследования; анализе литературы, построении квантовохимических моделей и проведении основной массы расчётов; в интерпретации данных и оценке применимости расчётных методов; в непосредственном участии в обработке, обсуждении и обобщении результатов, полученных лично или в соавторстве. Все экспериментальные данные, представленные в диссертации, получены соавторами или взяты из литературных источников.

Структура и объём диссертации. Диссертация состоит из введения, пяти глав, заключения и выводов, перечня используемых сокращений, списка литературы и приложения. Она изложена на 213 станицах машинописного текста, содержит 91 рисунок и 39 таблиц. Список литературы включает 175 наименований, в число которых входят 23 работы автора по теме диссертации.

Соответствие специальности 1.3.17 – химическая физика, горение и взрыв, физика экстремальных состояний вещества.

Содержание диссертации соответствует п. 2: «пространственное и электронное строение, атомно-молекулярные параметры и спектральные характеристики изолированных атомов и молекул, а также их ионов; структура и свойства ... кластеров, ассоциатов...»; п. 5: «поверхности потенциальной энергии взаимодействующих атомно-молекулярных частиц, квантово-химические методы их расчета; химические механизмы реакций»; п. 9: «строение, структура и реакционная способность интермедиатов химических реакций» паспорта научной специальности 1.3.17 – химическая физика, горение и взрыв, физика экстремальных состояний вещества (отрасль науки – химические).

В автореферате использованы сокращения:

АР / ИР / КР – анион-радикал(ы) / ион-радикал(ы) / катион-радикал(ы)

АРД / КРД – анион- / катион-радикальный димер(ы)

ВЗМО / НСМО – верхняя заполненная / нижняя свободная МО

ВМЭ - метод времяразрешенного магнитного эффекта в рекомбинацион-

ной флуоресценции спин-коррелированных ион-радикальных пар

ДМФА – N,N-диметилформамид

МО – молекулярная орбиталь

ОД ЭПР – метод оптически детектируемого электронного парамагнитного резонанса

ОЗМО – однозаполненная молекулярная орбиталь

ППЭ – поверхность потенциальной энергии

ПС (TS)- переходное состояние

СТВ – сверхтонкое взаимодействие

ХФ (HF) – метод (приближение) Хартри-Фока

ЯТ – Яна-Теллера (эффект, теорема), а также ян-теллеровский (ион)

a(X) – константа сверхтонкого взаимодействия с ядрами X

с-DEС – *цис*-декалин

с-Нех – циклогексан

DFT – теория функционала плотности (density functional theory)

EC – этиленкарбонат (ethylene carbonate)

Me, Eth, *n*-Pr, *i*-Pr, *t*-Bu – метил, этил, н-пропил, изопропил, трет-бутил

PCM – модель поляризуемого континуума (polarizable continuum model) *t*-DEC – *mpahc*-декалин

TRF – метод время-разрешенной рекомбинационной флуоресценции (time-resolved recombination fluorescence)

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Первая глава содержит описание расчётных методов, замечания о представлении результатов и комментарии относительно терминов, не являющихся широко используемыми, или же понимаемых нами в более широком смысле по сравнению с общепринятым. К таким терминам относится «псевдовращение» – характеристика ЯТ ИР. Его использование по отношению к низкосимметричным объектам мы считаем правомерным, если ППЭ этих объектов сохраняют такие особенности ППЭ ЯТ систем, как коническое пересечение и его обход. Оговаривается употребление термина «активные» для нормальных колебаний (мод), имеющих мнимую час-

тоту, и для координат, задаваемых соответствующими переходными векторами, а также использование нижней свободной β-МО при анализе распределения спиновой плотности в КР в случаях проведения расчётов неограниченными по спину методами HF и DFT.

Вторая глава посвящена рассмотрению ППЭ и мономолекулярной фрагментации АР полифторированных ароматических соединений. Она начинается с обзора литературных данных о строении ППЭ АР высокосимметричных молекул С₆H₆ и С₆F₆ (ЯТ ионов), а также АР молекул симметрично замещенных фторбензолов: пента-, 1,2,4,5-тетрафторбензола, 1,2,3-трифторбензола, имеющих более низкую симметрию. Отмечается, что ППЭ последних сохраняют черты, присущие ППЭ ЯТ ионов – коническое пересечение и его обход по координате псевдовращения. Однако минимумы и переходные состояния (ПС) этих ППЭ могут быть не эквивалентны, число стационарных точек может отличаться от такового для потенциальных поверхностей С₆H₆⁻⁻ и С₆F₆⁻⁻ [1]. Обсуждается неплоское строение фторсодержащих АР, обусловленное псевдоэффектом Яна-Теллера (ЯТ). Даются ссылки на работы, в которых было изучено строение ППЭ перечисленных АР и дана интерпретация их констант сверхтонкого взаимодействия (СТВ).

Далее рассматривается строение ППЭ АР полифторбензолов, ранее не изученных (или изученных только на ХФ уровне); исследуется возможность пересечения термов разных электронных состояний и его обхода при расширении ароматической системы (переходе от АР фторбензолов к АР конденсированных систем); рассматривается влияние функциональных заместителей на строение ППЭ АР (поли)фторароматических соединений. Проводится интерпретация результатов экспериментальных исследований.

Особенности электронного и геометрического строения **AP 1,3,5-трифторбензола** (1,3,5-F₃C₆H₃⁻⁻) [<u>1</u>; <u>2</u>] обусловлены высокой симметрией молекулы-предшественника (D_{3h}) и сочетанием эффекта и псевдоэффекта ЯТ. Первый понижает симметрию частицы до $C_{2\nu}$ (рис. 1а), второй обеспечивает её дальнейшее понижение, проявляющееся в отклонении связей C-F от плоскости кольца. Стационарные структуры симметрии C_s и C_2 отвечают соответственно минимумам и ПС ППЭ, которая имеет форму замкнутого цикла (рис. 1б) и является поверхностью псевдовращения. На рис. 16 и далее использованы обозначения стационарных структур, введенные в

Рисунок 1. а) Сечение ППЭ 1,3,5- $F_3C_6H_3^{--}$ вдоль полносимметричной в группе $C_{2\nu}$ координаты Q_{JT} , Δ - барьер псевдовращения плоских структур $C_{2\nu}(^2B_1)$ и $C_{2\nu}(^2A_2)$, вид ОЗМО этих структур; б) цикл псевдовращения 1,3,5- $F_3C_6H_3^{--}$ (показан частично).

[2]; в скобках – угол поворота локальной системы координат, знаки «+» и «-» относятся к структурам, связанным операцией инверсии.

Высота барьера псевдовращения, рассчитанная (B3LYP, M06-2X, BHHLYP, базис 6-31+G*) как разность полных энергий C_s и C_2 структур, невелика, 3 – 4 ккал/моль. Наблюдаемая в экспериментах МАRY и ОД ЭПР эквивалентность трёх атомов фтора (a(3F) = 7.4мТл) возникает как результат усреднения констант СТВ за счет быстрого псевдовращения. Усредненные по минимумам a(F) лежат в диапазоне 8.9 – 6.6 мТл, лучшее значение получено с применением функционала BHHLYP.

Топографическое подобие ППЭ **АР 1,2,4-трифторбензола** $(1,2,4-F_3C_6H_3^{--})$ [<u>1</u>; <u>3</u>] ППЭ $C_6F_6^{--}$ и 1,3,5- $F_3C_6H_3^{--}$ не было ожидаемым в силу самой низкой в ряду $C_6F_{6-n}H_n^{--}$ симметрии молекулыпредшественника. Схема ППЭ (рис. 2) отвечает данным расчётов методами HF, MP2 и тех вариантов DFT, когда функционал содержит заметный вклад ХФ обмена (ВННLYP, M05-2X, M06-2X, M06-HF). По данным расчетов с функционалами BLYP, X3LYP, PBE, а также B3LYP, который хорошо описывает параметры СТВ AP гексафторбензола [3] и 1,2,3-трифторбензола [4], структуры **В**($\pi/3$)[±] не являются стационарными. Последний результат признан ошибочным, поскольку без вклада этих структур в усреднение констант СТВ невозможно описать наблюдаемый спектр ЭПР.

Рисунок 2. Схема ППЭ 1,2,4- $F_3C_6H_3^{--}$ при наличии минимумов, отвечающих структурам $\mathbf{B}(\pi/3)^{\pm}$. Вид ОЗМО.

Разница полных энергий структур $\mathbf{B}(\pi/3)^{\pm}$ и $\mathbf{B}(-\pi/3)^{\pm}$ мала (0.5 – 1.5 ккал/моль), а энергетический барьер перехода между ними не превышает 2 ккал/моль. Константы СТВ (табл. 1) рассчитаны с помощью распределения Больцмана в предположении быстрого спектрального обмена. Полученные значения несколько превышают экспериментальные, однако расчеты правильно воспроизводят температурную зависимость $a(\mathbf{F}^2)$.

Табл. 2 содержит результаты расчётов стационарных структур ППЭ **АР 1,2,3,5-** [<u>1</u>; <u>4</u>] **и 1,2,3,4-тетрафторбензолов**. ППЭ первого из них сохраняет описанную выше топографию. В структурах C_1 , отвечающих глобальным минимумам ППЭ, ОЗМО локализована преимущественно на связях C¹⁽³⁾-F, а в отвечающих локальным минимумам C_s – на C²-F. Соответственно различны и наборы констант СТВ, характеризующие эти структуры.

аолица І. Константы	ствсядрами	Γ при $\Gamma = 24$	I - 309 K.
$1,2,4-F_3C_6H_3^{-1}$	<i>а</i> (F ¹), мТл	<i>a</i> (F ²), мТл	<i>а</i> (F ⁴) , мТл
Эксперимент	3.50 ± 0.05	12.29÷11.79	0.70 ± 0.05
M06-2X/6-311+G**	4.73÷4.71	15.09÷14.57	0.81÷0.84

Таблица 1. Константы СТВ с ядрами 19 F при T = 241 - 309 К.

 110 III 1,2,3,5 II 1,2,5,1 Ieipupiopoensonob. (D5E1170 5110)					
	$1,2,3,4-F_4C_6H_2^{-1}$		$1,2,3,5-F_4C_6H_2^{}$		
структура	симметрия,	ΔE	симметрия,	ΔE	
	тип точки ^{а)}	ккал/моль	тип точки ^{а)}	ккал/моль	
$\mathbf{A}(0)^{\pm}$	$C_2(^2A), 1$	0.45	$C_2(^2A), 1$	1.47	
$\mathbf{B}(\pm \pi/3)^{\pm}$	$C_1(^2A), 0$	0	$C_1(^2A), 0$	0	
$\mathbf{A}(\pm \pi/3)^{\pm}$	нестационарная точка		$C_1(^2A), 1$	2.45	
$\mathbf{B}(0)^{\pm}$	$C_{s}(^{2}A'), 1$	5.22	$C_{s}(^{2}A'), 0$	1.89	

Таблица 2. Относительные энергии (ΔE) стационарных структур ППЭ АР 1,2,3,5- и 1,2,3,4-тетрафторбензолов. (B3LYP/6-31+G*)

^{а)} Количество отрицательных силовых постоянных в матрице Гессе.

Низкие энергетические барьеры псевдовращения (табл. 2) позволяли ожидать проявлений спектрального обмена в спектрах ЭПР. Эти данные инициировали экспериментальные исследования, 1,2,3,5-F₄C₆H₂⁻⁻ был зафиксирован методами ОД ЭПР и ВМЭ. Оба метода привели к набору констант СТВ: a(2F) = 14.1, a(1F) = 9.5, a(1F) = 1.5 мТл, который воспроизводится расчетами в предположении динамического усреднения по глобальным минимумам ППЭ: a(2F) = 16, a(1F) = 10 и a(1F) = 1.6 мТл. Согласие результатов имело важное методическое значение, показав применимость высокочувствительного метода ВМЭ для регистрации АР фтораренов.

ППЭ 1,2,3,4-F₄C₆H₂⁻⁻ содержит минимумы только одного типа. Им соответствуют структуры $\mathbf{B}(\pm \pi/3)^{\pm}$. Структуры $\mathbf{B}(0)^{\pm}$ и $\mathbf{A}(0)^{\pm}$ отвечают ПС, а $\mathbf{A}(\pm \pi/3)^{\pm}$ - не являются стационарными.

Рассмотрение полного ряда АР фторсодержащих бензолов завершено. ППЭ всех его членов, независимо от количества атомов фтора и симметрии, сохраняют черты ППЭ высокосимметричных представителей ряда. Общая природа ППЭ позволяет говорить о «псевдовращении» низкосимметричных АР, несмотря на то, что их конформационные превращения уже не создают иллюзию вращения объекта как целого. Подобная точка зрения оказалась применима и за рамками ряда АР фторзамещённых бензолов.

Исследование ППЭ АР октафторнафталина $C_{10}F_8^{--}$ проведено [<u>1</u>; <u>5</u>] методами ROHF/6-31G* и UB3LYP/6-31+G*. Первый не способен правильно описать пространственное и электронное строение $C_{10}F_8^{--}$, но его результаты - удобная отправная точка на пути к пониманию природы ППЭ этого AP. По данным ROHF расчётов заселение неспаренным электроном нижних свободных *π*орбиталей $C_{10}F_8^{--}$ приводит к состояниям ${}^2B_{1g}$ и ${}^2B_{3g}$; термы которых

пересекаются. Соответствующие стационарные структуры, $D_{2h}({}^{2}B_{1g})$ и $D_{2h}({}^{2}B_{3g})$, отвечают минимуму ППЭ и ПС (рис. 3а).

Рисунок 3. По данным метода ROHF/6-31G*: а) сечение ППЭ $C_{10}F_8^{-1}$ вдоль координаты псевдовращения $Q(b_{2g})$, вид ОЗМО в избранных точках, вид активной моды в переходном состоянии; в рамочке - мода псевдовращения для $C_6H_6^{-1}$; 6) схема ППЭ $C_{10}F_8^{-1}$.

Спуск от $D_{2h}(^{2}B_{3g})$ вдоль обоих направлений активной координаты $\hat{Q}(b_{2e})$ приводит к структуре $D_{2h}({}^{2}B_{1e})$, то есть, ППЭ $C_{10}F_{8}^{-1}$ имеет циклическое строение (рис. 3б). В ходе трансформации симметрия AP понижается до $C_{2h(y)}$, допуская смешение b_{1g} и b_{3g} MO. При достижении минимума симметрия восстанавливается со сменой электронного состояния – пересечение термов обходится. В конечных точках IRC расчетов, соответствующих $D_{2h}(^{2}B_{1e})$ структуре, ОЗМО имеет разные знаки составляющих её атомных орбиталей, то есть, обход пересечения сопровождается скачком фазы волновой функции. Таким образом, ППЭ С₁₀F₈- обладает особенностями, характерными для ППЭ высокосимметричных ЯТ ИР, в частности, АР бензола. Активная мода $D_{2h}({}^{2}B_{3g})$ структуры $C_{10}F_{8}^{-1}$ подобна псевдовращательной моде плоской $D_{2h}({}^{2}A_{u})$ структуры C₆H₆⁻⁻ (рис. 3a), но представляет собой согласованное изменение геометрии двух колец. Всё это позволяет говорить о ППЭ C₁₀F₈- как о поверхности псевдовращения и использовать термин «псевдовращение» при описании свойств этого низкосимметричного АР.

Учет электронной корреляции на уровне B3LYP приводит к значительному усложнению строения ППЭ С₁₀F₈^{-•}. Вследствие вне-

плоскостных искажений и нарушения эквивалентности колец, понижается симметрия стационарных структур и возрастает число стационарных точек ППЭ. На результирующей ППЭ (рис. 4) два минимума, которым соответствуют структуры $C_{2h(z)}$ (${}^{2}A_{g}$), связаны посредством четырёх ПС псевдовращения, которыми являются структуры $C_{2(x)}$ (${}^{2}A$), и двух ПС инверсии – структуры $C_{2\nu(y)}$. Высота барьера псевдовращения – 6,3 ккал/моль, инверсии – 0.5 ккал/моль.

Рисунок 4. Схема $\Pi\Pi \ni C_{10}F_8^{-1}$ (UB3LYP). Пунктирные линии – инверсия $C_{2h(z)}$ структур. Пересечение циклов псевдовращения - кажущееся. Вид ОЗМО C_{2h} и C_2 структур.

Неплоское строение $C_{10}F_8^{-1}$ подтверждается расчетами (UB3LYP) констант СТВ с ядрами ¹⁹F. Значения для плоской $D_{2h}(^2B_{1g})$ структуры, a(4F) = 11.0, a(4F) = 14.1 Гс, заметно меньше величин, 22.1 и 28.5 Гс, полученных экспериментально [5]. Значительно ближе к этим величинам константы, рассчитанные для неплоской структуры $C_{2h(z)}$, $a(4F^{\alpha}) = 23.7$ и $a(4F^{\beta}) = 34.0$ Гс.

В ряду АР симметрично замещённых тетрафторнафталинов: 1,4,5,8- $F_4C_{10}H_4^{--}$, 2,3,6,7- $F_4C_{10}H_4^{--}$ и 1,2,3,4- $F_4C_{10}H_4^{--}$ пересечение термов низколежащих электронных π -состояний и его обход по координате псевдовращения имеют место только в последнем случае.

ППЭ АР полифтораренов, содержащих многоатомный заместитель, рассмотрены на примерах АР пентафторанилина (C₆F₅NH₂⁻⁻) и некоторых фторзамещенных бензоат-ионов. Во всех случаях сложное строение ППЭ, свойственное АР полифторзамещенных бензолов, сохраняется.

ППЭ $C_6F_5NH_2^{--}$ [<u>1</u>; <u>4</u>; <u>6</u>; <u>7</u>] подобна ППЭ $C_6F_6^{--}$ и представляет собой поверхность псевдовращения, жёлоб которого объединяет

двенадцать неплоских стационарных структур – шесть минимумов и шесть ПС. В ходе псевдовращения C₆F₅NH₂⁻⁻ происходит инверсия внеплоскостного искажения в пентафторфенильном фрагменте, но конфигурация NH₂-группы не изменяется. Малое время жизни этого АР сделало его недоступным для исследований методом ОД ЭПР; он был зафиксирован методом ВМЭ. Низкие энергетические барьеры на пути псевдовращения позволяли предполагать динамиусреднение констант CTB. Рассчитанные ческое методом CamB3LYP значения $a(2F^{opmo}) = 10.1$, $a(2F^{mema}) = 15.4$, $a(F^{napa}) = 14.4$ мТл, хорошо согласуются с экспериментальными данными (a(2F) =10.5, *a*(2F) = 16 и *a*(1F) = 14.5 мТл).

ППЭ пяти рассмотренных [8] представителей ряда **АР по**лифторзамещенных бензоатов представляют собой поверхности псевдовращения, однако количество стационарных точек в их желобах псевдовращения различно. ППЭ АР 3,4,5-трифтор-, 2,3,4,5тетрафтор- и пентафторбензоатов объединяют два энергетически эквивалентных минимума и два эквивалентных ПС. ППЭ АР 2,3,4трифтор- (рис. 5) и 2,3,4,6-тетрафторбензоатов подобны ППЭ $C_6F_6^{--}$, но их минимумы и ПС не эквивалентны: и тот и другой тип стационарных точек представлены двумя видами неплоских структур. Внеплоскостные искажения затрагивают главным образом атомы фтора, протоны остаются в плоскости ароматического кольца.

Рисунок 5. Схема ½ ППЭ АР 2,3,4-трифторбензоата. Вид и относительные энергии (ккал/моль) стационарных структур (на схематичных изображениях протоны не показаны). Обведены структуры **В**(-π/3)[−], различающиеся углом поворота группы CO₂[−], их связывает ПС вращения этой группы. (CamB3LYP/6-31+G*)

15

Группа CO_2^- в АР бензоатов, содержащих атом фтора хотя бы в одном *орто*-положении, по стерическим причинам повернута по отношению к плоскости ароматического кольца. Инверсия внеплоскостных отклонений связей С-F в ходе псевдовращения происходит согласованно с изменением угла поворота группы CO_2^- , в результате, в отличие от случая АР пентафторанилина, структуры, различающиеся знаком внеплоскостного отклонения атомов фтора, энергетически эквивалентны.

Анализ строения ППЭ **АР перфторбензоциклобутена** [9], в котором ароматическое кольцо конденсировано с напряженным четырехчленным циклом показал, что даже сложные комбинированные системы, не являющиеся ароматическими, могут обладать структурной нежесткостью по отношению к координате, подобной координате псевдовращения ЯТ АР ароматических соединений. Предположение о быстрых конформационных переходах между низкосимметричными неплоскими структурами АР перфторбензоциклобутена, повышающих его эффективную симметрию до $C_{2\nu}$, позволило интерпретировать данные экспериментов ВМЭ [9].

В параграфе «Мономолекулярная фрагментация АР полифторированных ароматических соединений и их производных» рассмотрено проявление сложного строения ППЭ в особенностях протекания характерной реакции этих АР – запрещённого по симметрии распада с отщеплением F⁻. Знание этих особенностей необходимо для интерпретации данных о восстановительном гидродефторировании полифтораренов – реакции, протекающей с промежуточным образованием АР и имеющей прикладное значение.

Параграф начинается с обзора литературы, цель которого – анализ сложившихся представлений о механизмах мономолекулярного распада АР галогенсодержащих ароматических соединений и подходов к теоретическому изучению этой реакции, а также – отбор работ, данные которых интересны с точки зрения теоретической интерпретации. Отмечается, что в случае запрещённой по симметрии фрагментации АР л-типа координата реакции зависит от распределения плотности ОЗМО [6]: в случае отщепления галогенидиона из положения с максимальной плотностью ОЗМО координата реакции есть комбинация растяжения связи и её внеплоскостного отклонения; при отщеплении галогенид-иона из положения с нулевой или малой плотностью ОЗМО собственно распаду предшествует перенос плотности неспаренного электрона на разрывающуюся связь, который осуществляется при движении системы по координате псевдовращения. Подчёркивается, что отщепление F, как правило, происходит в полярном растворителе, и расчёты путей реакции требуют учёта влияния окружения.

Обсуждение собственных результатов начинается с фрагментации **АР октафторнафталина** [<u>1</u>; <u>5</u>]. Восстановительное гидродефторирование его нейтрального предшественника цинком в водном аммиаке привело к продуктам только β -дефторирования [7].

Учёт влияния растворителя (H₂O) в рамках РСМ приводит к качественному изменению формы ППЭ C₁₀F₈⁻⁻ (рис. 6). Структуры $C_{2h(z)}$ обретают неустойчивость по отношению к нарушению эквивалентности колец и становятся ПС; глобальным минимумам ППЭ соответствуют $C_{s(xy)}$ (²A'). ПС псевдовращения, как и в газовой фазе, соответствует структура $C_{2(x)}$ (²A). Неэквивалентность колец в стационарных структурах приводит к разделению жёлоба псевдовращения на два независимых цикла – в каждом происходит внутримолекулярный перенос плотности неспаренного электрона в пределах

Рисунок 6. а). Схема ППЭ $C_{10}F_8^-$ в полярном растворителе: пунктирная линия – путь инверсии, совмещённый с переносом электронной плотности между кольцами; сплошные линии – циклы псевдовращения, пересечение этих линий – артефакт двумерного изображения. Локальные минимумы, соответствующие структурам C_1 (Min), не отмечены. б). Одно из сечений ППЭ вдоль координаты псевдовращения, ему соответствует точечная линия на схеме а. Схематическое изображение двух каналов фрагментации $C_{10}F_8^-$. Вид ОЗМО. (РСМ(H₂O)/B3LYP/6-31+G*)

только одного кольца (рис. 6а).¹ На пути псевдовращения формируется очень мелкий локальный минимум (рис. 6б); ОЗМО соответствующей стационарной структуры C_1 (Min) преимущественно локализована на одной связи C-F^{β}. Глобальный и локальный минимумы имеют близкие энергии. Внутримолекулярный перенос электронной плотности, на β -связь C-F не требует значительных энергетических затрат ($\Delta E^a = 0.4$ ккал/моль).

ПС отщепления F⁻ из α- и β-положений² $C_{10}F_8^{-}$ соответствуют структуры TS_{α} и TS_{β} (рис. 6б). Диссоциации связи C^α-F подвержена структура C_s (²A'). Координата реакции типична для отщепления галогенид-иона из положений богатых плотностью неспаренного электрона. Разрыв связи C^β-F происходит в структуре C_1 (Min). Существенная разница в высоте энергетических барьеров распада $C_{10}F_8^{-}$ с уходом F⁻ из α- и β-положений (5 и 1.5 ккал/моль) объясняет наблюдаемое дефторирование $C_{10}F_8$ исключительно из β-положения.

 $C_6F_5NH_2^{--}$ зафиксирован методами ВМЭ и TRF, энергия активации его гибели оценена как 3.6 ± 0.3 ккал/моль, а время жизни в изооктане как несколько наносекунд. Столь быстрая гибель AP объяснена [<u>1</u>; <u>4</u>; <u>7</u>] отщеплением F⁻ из *орто*-положения по отношению к аминогруппе. Возможность диссоциации связи C–F в среде низкой полярности обусловлена стабилизацией зарождающегося фторид-иона взаимодействием с протоном аминогруппы. Расчётная (PCM(*c*Hex)/ROB3LYP/6-31+G*) высота энергетического барьера фрагментации 3.0 ккал/моль соответствует экспериментальной оценке. Данный канал фрагментации не реализуется в случае AP 4-аминононафторбифенила, по причине локализации плотности O3-MO в пентафторфенильном кольце [<u>1</u>; <u>7</u>].

Образование при восстановительном гидродефторировании 2аминогептафторнафталина ($C_{10}F_7NH_2$) двух изомерных продуктов монодефторирования — 1,3,4,5,6,8- и 1,3,4,5,7,8-гексафтор-2нафтиламинов, объяснено [10] на основе анализа ППЭ промежуточно образующегося АР $C_{10}F_7NH_2^{-1}$. Показано наличие двух типов минимумов, которым соответствуют структуры близкой энергии — $\mathbf{B}(-\pi/3)^{\pm}$ и $\mathbf{B}(\pi/3)^{\pm}$. ОЗМО данных структур локализованы преиму-

¹ Топографически каждый из этих циклов подобен ППЭ C₆F₆-.

² Полного отщепления F⁻ на данном уровне учёта сольватации не происходит. Спуск вдоль активной координаты приводит к мелким минимумам.

щественно на одной связи, C^7 -F или C^6 -F соответственно; высота барьеров диссоциации этих связей ≤ 0.5 ккал/моль.

Ацилирование аминогруппы приводит к значительной стабилизации структур с локализацией плотности неспаренного электрона на связи C⁶-F. Соответственно, на ППЭ АР N-(гептафтор-2нафтил)ацетамида обнаруживаются [<u>11</u>] минимумы только одного вида, что отвечает образованию единственного продукта моногидродефторирования – N-(1,3,4,5,7,8-гексафтор-2-нафтил)ацетамида.

Позиционная зависимость механизма фрагментации АР фторсодержащих бензоатов, $(C_6F_nH_{5-n}-CO_2^-)^-$, n = 1 - 5, изучена [8] методом САМ-ВЗLYP/6-31+G*. Континуальное приближение для учета влияния среды, РСМ (H₂O), сочеталось с включением в расчеты двух молекул H₂O с целью учета специфических взаимодействий группы CO₂⁻ с растворителем. В диссертации подробно рассмотрены примеры АР монозамещённых бензоатов и AP 2,3,4,6тетрафторбензоата. В автореферате – только последний пример.

Структура исходного АР и сечения его ППЭ вдоль координат фрагментации с разрывом каждой связи С-F изображены на рис. 7. Там же показаны ОЗМО для ПС. Наиболее низкие энергетические барьеры соответствуют отщеплению F из положений 2 и 4. Положение 4 богато электронной плотностью, координата диссоциации связи C⁴-F есть суперпозиция её растяжения и внеплоскостного отклонения. Разрыв связи C²-F протекает по двустадийному механизму. Сначала происходит перенос плотности неспаренного электрона на эту связь – псевдовращение, затем обход π-σ пересечения. Псевдовращение проявляется в изменениях ОЗМО, их можно сопоставить изменениям O3MO AP бензола на участке от B(0) до $B(\pi/3)$, рис. 7в. Для диссоциации связей С³-F и C⁶-F также необходим предварительный внутримолекулярный перенос плотности неспаренного электрона, однако в этих случаях реакция протекает в одну стадию. ПС фрагментации связи C^3 -F – аналог структуры $A(\pi/3)$. Наличие достаточно высокого энергетического барьера согласуется с тем фактом, что продукты, отвечающие разрыву связи С³-F, экспериментально не зафиксированы. Не зафиксированы и продукты разрыва связи С⁶-F. Для этого канала расчёты предсказывают самое позднее ПС и максимальное значение энергии активации E^a.

Аналогичные расчеты были проведены для всего ряда AP фторзамещенных бензоатов. Рассмотрено отщепление F из всех положений, неэквивалентных по отношению к группе CO₂⁻, локали-

Рисунок 7. а) Структура и вид ОЗМО АР 2,3,4,6-тетрафторбензоата. б) Сечения ППЭ вдоль координат мономолекулярного распада с отрывом F из разных положений (цифра в окружности) по отношению к группе CO₂⁻. Вид ОЗМО в ПС. в) Эволюция ОЗМО АР бензола при псевдовращении.

зованы ПС, определены E^a . В большинстве случаев фрагментация АР протекает как одностадийный процесс. Двустадийный механизм реализуется в случаях ухода F⁻ из *орто*-положения AP, имеющих атом F ещё и в *пара*-положении; исключение – AP пентафторбензоата. При дефторировании из *орто*- и *мета*-положений к CO₂⁻ группе механизм реакции включает псевдовращение как путь переноса плотности неспаренного электрона на рвущуюся связь.

Полученные *E^a* соответствуют результатам [8] восстановления полифторсодержащих бензойных кислот металлами в полярной среде, идущего с промежуточным образованием АР бензоатов, отражая как общую предпочтительность положений дефторирования относительно группы CO₂⁻: *пара-* > *орто-* > *мета-*, так и другие выявленные экспериментально закономерности. Обнаружена связь многоканального протекания реакции со сложным строением газофазных ППЭ промежуточных АР: образование более одного продукта происходит, когда жёлоб псевдовращения соответствующего АР содержит минимумы разных типов. Минимальные для каждого АР значения E^a коррелируют с экспериментальными константами скорости гибели АР [8].

Восстановление 3-хлор-2,4,5,6-тетрафтор-пиридина (3-Cl-С₅F₄N) под действием Zn(Cu) в водном ДМФА приводит [9] к продуктам гидрогенолиза не только C-Cl, но и C-F связи, хотя последняя намного прочнее. Соотношение продуктов зависит от мольной доли воды и достигает 2:1 в пользу продукта дефторирования. Результаты интерпретированы [12] на основе анализа ППЭ промежуточного АР 3-Cl-C₅F₄N⁻⁻. Показано, что наблюдаемый эффект обусловлен различиями в механизме разрыва связей C-F и C-Cl, причём эти различия обусловлены не природой атома галогена, а его положением в гетероцикле. Сечения ППЭ рассчитаны вдоль координат отщепления Cl и F из положения 4. В последнем случае вид потенциальной кривой качественно зависит от уровня учёта влияния среды. Комбинированная (сочетающая подход супермолекулы и метод поляризуемого континуума: PCM-SMD(H₂O)/wB97X-D/6-31+G* + 2H₂O) модель учёта растворителя, допускающая реорганизацию его молекул, позволила получить потенциальную кривую, отражающую наличие двух каналов фрагментации 3-Cl-C₅F₄N⁻, и показать, что, несмотря на большую энергетическую выгодность отщепления Cl⁻, пренебрежимо малый энергетический барьер отщепления F делает последний процесс основным каналом гибели обсуждаемого АР в полярном растворителе.

Замещение на водород атомов фтора ароматического ядра при сохранении связей С-F трифторметильных групп наблюдалось при гидродефторировании изомерных полифторксилолов под действием Zn(Cu)-DMF-H₂O [10]. Это противоречило представлениям об относительной прочности связей C_{Ar}-F и C_{Alk}-F и о влиянии симметрийных факторов на фрагментацию AP.

С целью интерпретации экспериментальных данных исследованы [13] сечения ППЭ АР перфтор-*пара*-, *мета*- и *орто*-ксилолов вдоль возможных координат мономолекулярного распада с разрывом связи С-F (рис. 8). В каждом случае локализованы стационарные точки, отвечающие предреакционному комплексу исходного АР и двух молекул воды (**min1**), ПС (**TS**), постреакционному комплексу (**min2**). Расчёты проведены с учётом специфических взаимодействий с растворителем путём введения в расчёты двух молекул H₂O – SMD(H₂O)/ ω B97X-D/6-31+G*.

Полного отщепления F в рамках используемой модели не происходит. Постреакционными комплексами являются анионрадикальные структуры с длинной (> 2 Å) связью С-F и значительной степенью локализации отрицательного заряда на уходящем атоме F. Для распада этих структур на соответствующий радикал R[•] (фенильного или бензильного типа) и ассоциат $[F^- + 2H_2O]$ требуется 2 - 6 ккал/моль. Суммарной энергии R[•] и [F⁻ + 2H₂O] отвечает последний уровень (Pr) в каждом наборе. Нулевой уровень соответствует суммарной энергии изолированного АР и двух молекул воды, рассчитанных в континуальной модели. Для всех трёх изомеров разрыв связи С_{АІк}-F трифторметильной группы, приводящий к образованию радикала бензильного типа, выгоден энергетически. Разрыв же связей С_{Аг}-F, приводящий к образованию фенильных радикалов, происходит эндотермически. Ни относительная энергетическая стабильность передреакционных или постреакционных комплексов, ни тепловой эффект фрагментации соответствующих АР не объясняют наблюдаемых закономерностей гидродефторирования $(CF_3)_2C_6F_4.$

Рисунок 8. Уровни энергии стационарных структур, лежащих на путях фрагментации AP перфтор-*пара*- (а), *-мета*- (б) и *-орто*-ксилолов, ассоциированных с двумя молекулами воды. Уровни, отвечающие разрыву связей C_{Ar} -F, нарисованы серым цветом, положение связи относительно заместителей указано около уровня продуктов **Pr**. Чёрным изображены уровни, соответствующие фрагментации одной из связей C_{Alk} -F.

Эти закономерности обусловлены различиями в активационных барьерах фрагментации (E^a). Данные величины определены как разности полных энергий структур **TS** и **min1**. Минимальные значения E^a для каждого изомерного AP соответствуют тем связям C-F, разрыв которых приводит к наблюдаемым экспериментально основным продуктам моногидродефторирования перфторксилолов. Механизм диссоциации связи C-F зависит от её положения, определяется электронным строением исходного AP и проявляется в изменениях O3MO в ходе реакции.

В последнем параграфе главы говорится о неприменимости метода координаты реакции к исследованию фрагментации AP галогенаренов в случаях, когда заметный вклад в реакционный механизм вносит псевдовращение [25].

Третья глава, посвящённая **ППЭ КР циклических алканов**, начинается с изложения литературных данных о строении ППЭ и константах СТВ КР циклогексана (*c*-Hex⁺⁻). Этот КР имеет ЯТ природу, его ППЭ является поверхностью псевдовращения (рис. 9). Литературные данные дополнены результатами наших расчётов методами B3LYP/6-31G* и BHHLYP/6-31G*.

Рисунок 9. Схема ППЭ КР циклогексана, ОЗМО стационарных структур. В скобках – угол поворота локальной системы координат.

Далее показано [1; 14; 15] (B3LYP/6-31G*), что потенциальные поверхности КР алкилзамещенных циклогексанов с заместителем в экваториальном положении (R-c-C₆H₁₁^{+*}), а также ППЭ КР диметилзамещённых циклогексанов (Me_2 -c-C₆H₁₀^{+*}) тоже являются поверхностями псевдовращения. Общая схема каждой ППЭ соответствует таковой для c-Hex^{+*} (рис. 9). Различия состоят в количестве стационарных структур и высоте барьера псевдовращения δ

(табл. 3), δ есть разность минимального и максимального значений полных энергий стационарных структур, $\delta = E_{\min} - E_{\max}$.

Существование двух близких по энергии структур, соответствующих разным электронным состояниям, было показано ранее для КР *транс*-декалина (*t*-DEC^{+*}) при объяснении отличий его спектрального поведения от поведения КР *цис*-декалина (*c*-DEC^{+*}) [12]. Мы исследовали возможность пересечения термов и строение ППЭ для обоих КР и показали [<u>16</u>], что эти ППЭ являются поверхностями конического пересечения.

ĸ	S (0)	$A(\pi/3)$	$S(-\pi/3)$	$\mathbf{A}(0)$	$\mathbf{S}(\pi/3)$	$A(-\pi/3)$
B3LYP/6-31G*						
Н	0	<u>0.5</u>	0	<u>0.5</u>	0	<u>0.5</u>
Me	<u>2.9</u>		0	1.5	0	
Et ⁶⁾	0	<u>2.2</u>	0.9	<u>2.2</u>	0.3	0.5
Et ^{B)}	1.4	2.4	1.7	2.4	1.7	<u>3.9</u>
<i>n</i> -Pr		<u>4.2</u>	3.5	4.0		0
<i>i</i> -Pr	0	4.0	3.8	<u>5.0</u>	3.8	4.0
t-Bu	0			<u>9.9</u>		
1,4-Me ₂	1.9	<u>2.0</u>	0	0.2	0	2.0
1,1-Me ₂	4.6	<u>4.8</u>	0	2.3	0	2.0
1,2-Me ₂	0	4.8	4.6	<u>6.3</u>	4.3	4.4
BHHLYP/6-31G*						
Me	<u>6.6</u>		0	4.0	0	
$\operatorname{Et}^{6)}$	1.1	4.0	0.7	<u>4.1</u>	0	2.6
$n \Pr^{(5),r)}$	0.8	4.7	1.4	<u>4.8</u>	0	1.5
1,1-Me ₂	7.4	<u>8.1</u>	0	4.8	0	<u>8.1</u>

Таблица 3. Относительные энергии^{а)} (ккал/моль) стационарных структур^{а)} *с*-Hex⁺⁻ и КР его алкилзамещённых производных.

^{а)} Ноль соответствует глобальному минимуму. Жирный шрифт – для минимумов ППЭ, курсив – для ПС, подчёркивание – для высоты барьера псевдовращения δ. Троеточие означает – данная структура не является стационарной.

⁶⁾ Заторможенная конформация ($\beta \approx \pm 60^\circ$).

^{в)} Заслоненная конформация ($\beta = 180^{\circ}$).

^{г)} *п*-пропильная группа находится в all-*trans* конформации.

По данным B3LYP/6-31G* расчётов максимальная высота барьера псевдовращения составляет < 2 ккал/моль для *t*-DEC⁺· и ~ 9 ккал/моль для *c*-DEC⁺·. Низкий барьер псевдовращения *t*-DEC⁺·

обусловливает усреднение его констант СТВ при повышении температуры. Структура минимальной энергии c-DEC⁺ лежит вне его цикла псевдовращения и является единственной структурой, наблюдаемой в экспериментах ЭПР.

Рассчитанные для КР алкилциклогексанов, *c*-DEC⁺⁺ и *t*-DEC⁺⁺ значения a(H) находятся в хорошем согласии с экспериментальными данными (рис. 10а), что служит косвенным показателем корректного описания ППЭ этих КР методом B3LYP. Исключение – КР *n*-пропилциклогексана (*n*-Pr-*c*-C₆H₁₁⁺⁺). Приемлемые результаты для него получены с функционалом BHHLYP; в зависимости (рис.10) вошли данные для нестационарной на уровне B3LYP структуры.

Исследования строения ППЭ КР ряда алкилзамещённых циклогексанов и изомерных декалинов привели к установлению [1; 14; 15] связи между парамагнитной релаксацией частиц и их внутримолекулярной динамикой. Эта связь проявляется в корреляции (рис. 10б) экспериментально определённых времён спин-решёточной релаксации T_1 и рассчитанных высот барьеров псевдовращения δ . Данный результат позволил нашим коллегам (ИХКГ СО РАН) предложить теоретическую модель, объясняющую аномально высокую скорость релаксации ИР в растворах.

Рисунок 10. Для КР ряда алкилциклогексанов и изомерных декалинов: а) сопоставление экспериментальных [11] и рассчитанных констант СТВ с протонами (a(H), Γc), прямая проведена под углом 45°; б) корреляция между временами спин-решёточной релаксации T_1 и высотами барьеров псевдовращения δ .

ППЭ и константы протонного СТВ КР циклопентана [<u>17</u>] $(C_5H_{10}^{+})$. Рассмотрено последовательное понижение симметрии $C_5H_{10}^{+}$ от высокосимметричной D_{5h} конфигурации нейтральной мо-

лекулы C_5H_{10} . Показано, что структурой минимальной энергии $C_5H_{10}^{++}$ является конформация конверта. Десять таких структур (${}^{i}\underline{E}$, \underline{E}_{i} , где i – номер атома углерода, а два типа индексов отражают два

направления отклонения этого атома от плоскости четырёх остальных) связаны посредством инверсии и псевдовращения. Высоты соответствующих энергетических барьеров оценены на уровне B3LYP/6-31G* (MP2/cc-pVTZ) как 1.9 (2.0) и 5.9 (3.9)¹ ккал/моль. Независимость инверсии и псевдовращения является принципиальным отличием конформационного поведения $C_5H_{10}^{++}$ от поведения C_5H_{10} .

ППЭ $C_5H_{10}^{++}$ объединяет четыре разных цикла псевдовращения и пять путей инверсии – каждая пара минимумов ППЭ связана конформационным переходом через единственное ПС. При интерпретации спектральных данных $C_5H_{10}^{++}$ необходимо учитывать оба типа его структурной нежесткости. Получить значение протонной константы СТВ, соответствующее спектральным данным, удается, если включить скошенную конформацию ${}^{i}\mathbf{T}_{j}$ во внутримолекулярную динамику системы. Рассчитанное нами значение a(H) составляет 5.9 Гс, что достаточно близко экспериментальному 6.3 Гс.

Четвёртая глава посвящена ион-радикальным димерам и ассоциатам, их структурной нежёсткости и строению ППЭ.

Выше были рассмотрены примеры проявления структурной нежёсткости ИР в их спектральных и химических свойствах. Поскольку большинство химических и биохимических процессов протекает в различных средах и затрагивает более одной частицы, нами был поставлен вопрос о сохранении особенностей архитектуры ППЭ структурно нежёсткого ИР при его взаимодействии с нейтральными молекулами (М).

Простейшим представителем структурно-нежёстких ИР ароматических соединений является ЯТ КР бензола ($C_6H_6^{+*}$); его ППЭ [<u>1</u>] хорошо изучена. В разделе «Псевдовращение КР бензола, ассоциированного с нейтральными молекулами M = HCN, CH₃CN, H₂O» описаны результаты исследований [<u>18</u>],² показавших, что структур-

¹ Приведены значения для одного из четырёх циклов псевдовращения – имеющего самый низкий барьер.

² Данные расчётов для $M = H_2O$ ранее не публиковались.

ная нежёсткость $C_6 H_6^{+}$ по отношению к псевдовращению сохраняется при его ассоциации с перечисленными М. Тип основного элек-

тронного состояния ассоциированного $C_6H_6^{++}$ зависит как от M, так и от взаимного расположения частиц (рассмотрено три варианта). Стационарные структуры комплексов $[C_6H_6^{++}...M]$ обозначены A (или a) и B (или b)¹ в за-

висимости от того, какую форму («вытянутую» - электронное состояние – ${}^{2}B_{2g}$ или «сжатую» - электронное состояние – ${}^{2}B_{3g}$) принимает $C_{6}H_{6}^{+*}$.

ППЭ [$C_6H_6^{++}...M$] представляют собой системы различных циклов псевдовращения ассоциированного $C_6H_6^{++}$. Высота барьера псевдовращения зависит от структуры комплекса, но во всех рассмотренных случаях не превышает 2 ккал/моль. Количество стационарных структур в циклах варьируется. Псевдовращение КР в комплексах вида **III**, в отличие от **I** и **II**, сопровождается относительным движением частиц (рис. 11). Количество стационарных структур соответствующего жёлоба псевдовращения удвоено по сравнению с жёлобом псевдовращения изолированного $C_6H_6^{++}$.

В табл. 4 приведены значения относительных энергий изомерных комплексов $[C_6H_6^+...M]$, определенные как разности полных энергий глобальных минимумов соответствующих жёлобов ППЭ. В большинстве случаев наиболее стабильны комплексы **Ш**.

В [<u>18</u>] мы не ставили задачу объединения в единую систему всех циклов псевдовращения для каждого M, однако при написании диссертации были сделаны некоторые шаги в этом направлении. В частности, на уровне B3LYP-D3/6-31G* найдено ПС, связывающие циклы псевдовращения комплексов I и III для ассоциата $[C_6H_6^{++}...HCN]$. Высота энергетического барьера между этими циклами составила 0.78 ккал/моль, что сопоставимо с высотами барьеров псевдовращения в этих комплексах. Переход между структурами минимальной энергии сопровождается как изменением электронного состояния КР, так и изменением относительного положения частиц; совокупность таких переходов создаёт иллюзию вращения димера как целого, образуя ещё один цикл псевдовращения.

¹ Строчная буква - для структур, симметрия которых ниже максимально возможной.

Рисунок 11. Псевдовращение комплексов [C₆H₆^{+•}...М] вида **III**. Крестик соответствует положению М. Вид ОЗМО для структур минимальной энергии (min) и ПС (TS).

Таблица 4. Относительная стабильность (ΔE , ккал/моль) комплексов $[C_6H_6^{+}...M]$. В скобках – структура минимальной энергии.

компл.	B3LYP-D3/	B3LYP-D3/	ωB97X-D/	ωB97X-D/			
	6-31G*	cc-pVDZ	6-31G*	cc-pVDZ			
M = HCN							
Ι	0.5 (A)	0.5 (A)	0.5 (b)	0.5 (b)			
II	1.1 (B)	1.0 (B)	0.9 (B)	0.9 (B)			
III	0 (B)	0 (B)	0 (B)	0 (B)			
$M = CH_3CN$							
Ι	1.6 (A)	1.7 (A)	1.4 (b)	1.8 (b)			
II	1.7 (B)	2.2 (B)	1.9 (B)	2.5 (B)			
III	0 (B)	0 (B)	0 (B)	0 (B)			
$M = H_2O$							
Ι	0.8 (A)	0.6 (A)	0 (b)	0 (b)			
III	0 (B)	0 (B)	0.1 (B)	0.4 (B)			

Таким образом, псевдовращение С₆H₆⁺⁻, ассоциированного с нейтральной молекулой М, является многоканальным процессом, объединяющим реакционные каналы двух типов. В первом случае псевдовращение присуще только КР, ассоциат как целое свою структуру сохраняет; во втором – структурно нежёстким является и сам ассоциат $[C_6H_6^+ \dots M]$.

При рассмотрении структурной нежёсткости димера $(C_6H_6)_2^{+*}$, образованного КР и молекулой бензола, оказалось удобным стартовать с рассмотрения ППЭ нейтрального димера бензола $(C_6H_6)_2$, молекулярные фрагменты которого собственной структурной нежёсткостью не обладают.

ППЭ сэндвичего димера бензола и его КР [19]. На основе качественного симметрийного анализа дана интерпретация сложного многоямного строения ППЭ (С6Н6)2 как следствия псевдоэфекта AT^1 в высокосимметричных D_{6h} и D_{6d} структурах и возможности шести вариантов сборки этих структур. Объяснено происхождение низкосимметричных структур C_{2h} и C_s , описанных в литературе.² Результирующая ППЭ (С₆Н₆)₂ объединяет тридцать шесть эквивалентных минимумов, которым соответствуют структуры симметрии C_{2h}^{x} , почти безбарьерно трансформирующиеся друг в друга. Пути этих превращений представляют собой систему взаимопересекающихся желобов псевдовращения трёх типов. Первые два возникают из неустойчивости структур D_{6h} и D_{6d} по отношению к взаимному сдвигу фрагментов. Рис. 12а показывает примеры таких циклов, порождённых конкретными сборками структур **D**_{6h} и **D**_{6d}. Желоба третьего типа объединяют структуры C_{2h} и C_s , порождённые разными сборками *D*_{6h} и *D*_{6d}. структур (рис. 12б).

Трансформации, присущие $(C_6H_6)_2$, присущи и его КР, существующему в виде двух орбитальных изомеров, соответствующих удалению электрона с ВЗМО или ВЗМО-1 ($C_6H_6)_2$ (рис. 12а). Архитектура ППЭ ($C_6H_6)_2^{++}$ сначала рассмотрена нами качественно на основе структуры ППЭ ($C_6H_6)_2$, а затем – на основе результатов квантовохимических расчетов, выполненных в рамках методов DFT, OO-RI-MP2 и EOM-IP-CCSD. Согласно полученным результатам, каждый орбитальный изомер ($C_6H_6)_2^{++}$ «псевдовращается» в рамках своего участка ППЭ аналогично тому, как это происходит в случае ($C_6H_6)_2$. Однако при псевдовращении ($C_6H_6)_2^{++}$ в ходе транс-

¹ Взаимодействие полносимметричного основного электронного ${}^{1}A_{1}$ состояния с вырожденным возбуждённым состоянием (${}^{1}E_{1g}$ в случае D_{6h} и ${}^{1}E_{5}$ в случае D_{6d} структуры).

 $^{^{2}}$ Мы не рассматривали структуры, не являющиеся сэндвичевыми – «T-shape».

Рисунок 12. а) D_{6h} и D_{6d} структуры (C_6H_6)₂ и понижение их симметрии при относительных сдвигах фрагментов. Происхождение низкосимметричных стационарных структур C_{2h} и C_s и их циклов псевдовращения. б) Взаимопревращения различных вариантов сборки D_{6h} и D_{6d} структур при повороте удалённого от наблюдателя (серого) кольца. Переход к стационарным структурам C_{2h}^{x} и C_s как реализация одного из шести вариантов относительного сдвига бензольных колец. Атомы с номерами 1 и 1' помечены точками.

формации димера как целого изменяется геометрическое и электронное строение его фрагментов. Эти изменения аналогичны происходящим при псевдовращении ян-теллеровского КР бензола (рис. 13а). Таким образом, конформационное поведение $(C_6H_6)_2^{++}$ есть сочетание структурных трансформаций $(C_6H_6)_2$ и $C_6H_6^{++}$.

Показано, что участки ППЭ, соответствующие орбитальным изомерам $(C_6H_6)_2^+$, не являются обособленными, как предполагалось в [12]. Взаимопревращение их структур минимальной энергии происходит посредством понижения симметрии димера, $C_{2h} \rightarrow C_2$ (рис. 136), при обходе конического пересечения.

Экспериментальное значение константы СТВ, отвечающее двенадцати эквивалентным протонам, определяется усреднением по структурам орбитального изомера **I**, как более стабильного. Полученный в расчетах низкий барьер псевдовращения (<0.35 ккал/моль) позволяет проводить такое усреднение. Расчетное значение константы $a(12H) = -2.15 \ \Gamma c \ (B3LYP-D3/cc-pVDZ)$ попадает в интервал экспериментальных оценок (-2.15 ÷ -2.24 Γc).

Рисунок 13. а) Один из циклов псевдовращения орбитального изомера I $(C_6H_6)_2^{+\cdot}$ б) Путь взаимопревращения орбитальных изомеров I и II $(C_6H_6)_2^{+\cdot}$. В центре рисунков помещена схема псевдовращения янтеллеровского $C_6H_6^{+\cdot}$.

 $(C_6H_6)_2^{+\cdot}$ может возникать либо при ионизации нейтрального димера бензола, либо в результате ион-молекулярного взаимодействия. Реализация в $C_6H_6^{+\cdot}$ эффекта ЯТ, а в $(C_6H_6)_2$ - псевдоэффекта ЯТ приводит к тому, что $(C_6H_6)_2^{+\cdot}$ в момент своего появления имеет низкую симметрию и находится в невырожденном электронном состоянии, следовательно, он не является ЯТ ионом, что *a priori* не очевидно.

Полученные данные расширяют представления о, казалось бы, очень тщательно изученных объектах – эталонных для исследования межмолекулярных и ион-молекулярных взаимодействий, а также создают основу для рассмотрения более сложных димеров и ассоциатов. Единичные примеры образования анион-радикальных димеров (АРД) в жидких растворах включают АРД двух полифтораренов, октафторнафталина (($C_{10}F_8$)₂⁻⁻) и 1,2,4,5-тетрафторбензола ((1,2,4,5-F₄C₆H₂)₂⁻⁻), зафиксированных [5] в *н*-гексановом растворе. Нашим соавторам удалось получить [20] экспериментальные свидетельства образования еще двух таких АРД – декафторбифенила ($C_{12}F_{10}$) и 4-аминононафторбифенила (NH₂C₁₂F₉). Изолированные $C_{12}F_{10}^{--}$ [14] и NH₂C₁₂F₉⁻⁻ [2] были зафиксированы ранее. Электронное и пространственное строение четырёх АРД изучено [20]. в едином теоретическом приближении B3LYP-D3/6-31+G*. Интерпретированы экспериментальные данные ОД ЭПР и ВМЭ.

Рассмотренные АРД различаются локализацией плотности неспаренного электрона и основным типом взаимодействия, объединяющего частицы в димер. Плотность дополнительного электрона в АРД, не содержащих отличных от атомов фтора заместителей, в равной мере делокализована по обоим фрагментам (рис. 14). Связывающее взаимодействие в этом случае – π -стекинг ($E_b = 19.0 - 23.2$ ккал/моль).

Рисунок 14. Низкоэнергетические структуры АРД полифтораренов, вид ОЗМО. Симметрия структур и их относительные энергии (ккал/моль, в скобках). Расстояния между фрагментами в ангстремах. Сверху вниз: АРД октафторнафталина, 1,2,4,5тетрафторбензола и декафторбифенила (показаны оси симметрии C_2).

Делокализация плотности неспаренного электрона, ослабляя вибронное взаимодействие π - и σ -состояний, приводит к тому, что фрагменты АРД имеют практически плоское строение (рис. 14), в отличие от мономерных АР С₁₀F₈⁻⁻, 1,2,4,5-F₄C₆H₂⁻⁻ и С₁₂F₁₀⁻⁻. Повидимому, возможность образования сэндвичевых АРД полифтораренов определяется соотношением между выигрышем в энергии за счет π -стекинга и энергетических потерь в результате нивелирования внеплоскостных искажений. Выраженные внеплоскостные искажения, присущие АР полифтораренов, препятствуют образованию димеров с делокализованной ОЗМО, что объясняет, почему обсуждаемый ряд АРД столь малочислен.

На ППЭ обсуждаемых АРД имеются два минимума примерно равной энергии, соответствующие структурам «идеального» и «параллельно смещённого» / «повёрнутого» сэндвича. Такое строение ППЭ обусловлено коническим пересечением термов двух электронных состояний разной симметрии. Эти состояния различаются знаком линейной комбинации орбиталей фрагментов в ОЗМО. При существовании пересечения должен существовать и его обход по координате, смешивающей эти состояния и соединяющей соответствующие геометрические структуры, т.е. можно полагать, что ППЭ рассмотренных АРД имеют циклическую структуру. Ввиду крайней пологости ППЭ и большого размера систем, поиск ПС таких поверхностей представляет собой отдельную, весьма сложную и трудоемкую задачу, которую мы перед собой не ставили.

Рассчитанные для газовой фазы константы a(F) для D_{2h} и C_i структур $(C_{10}F_8)_2^{--}$ близки между собой: 0.60 ($8F^{\alpha}$), 0.20 ($8F^{\beta}$) и 0.57 ($8F^{\alpha}$), 0.24 ($8F^{\beta}$) мТл, но лишь по порядку величины соответствуют значению 0.7 (16F) мТл, полученному [5] экспериментально. Учёт сольватации (РСМ/H₂O) практически не влияет на a(F), их значения для атомов фтора в α и β положениях остаются неэквивалентными. Мы не обсуждаем константы СТВ для ($1,2,4,5-F_4C_6H_2$) $_2^{--}$, поскольку разрешенный спектр ЭПР для этого АРД не получен.

Расчётные данные воспроизводят сильное уменьшение констант СТВ в (C₁₂F₁₀)₂⁻⁻ по сравнению с константами для изолированного C₁₂F₁₀⁻⁻. Ширина спектра ($\sigma^2 = \frac{1}{3}(\Sigma_i a_i^{2} \cdot I_i(I_i+1))$), рассчитанная для $C_2(^2A)$ структуры (C₁₂F₁₀)₂⁻⁻, составляет 1.58 мТл, что соответствует экспериментальной оценке [14] ~1.7 мТл. Предположение об участии (C₁₂F₁₀)₂⁻⁻ в образовании спин-коррелированных пар позволяет объяснить форму кривой ВМЭ.

Основную роль в образовании АРД 4-аминононафторбифенила играют электростатические взаимодействия с участием протонов аминогруппы. ППЭ этого АРД имеет циклическое многоямное строение с низкими энергетическими барьерами (рис. 15).

Рисунок 15. Схема ППЭ АРД 4-аминононафторбифенила: взаимосвязи и относительные энергии (ккал/моль) стационарных структур, вид ОЗМО.

В структурах, отвечающих минимумам ППЭ, дополнительный электрон локализован в пентафторфенильном кольце одного из фрагментов (преимущественно на *пара*-атоме С), димер представляет собой ассоциат AP и нейтральной молекулы, [M⁻¹...M⁰]. Наиболее глубоким минимумам отвечают две близких по энергии структуры Min1 и Min2 (E_b = 22.5 и 21.9 ккал/моль), различающиеся типом ион-молекулярного взаимодействия – образование водородной связи N-H...F и взаимодействие одного из протонов аминогруппы нейтрального фрагмента с максимумом электронного облака анион-радикального фрагмента на пара-атоме С. Несмотря на иной тип образующего димер взаимодействия, полученные энергии связывания сопоставимы с величинами, найденными для делокализованных АРД перфтораренов. В каждой из структур Min1 и Min2 возможен вырожденный перенос электрона между фрагментами. Низкие барьеры на пути переноса электрона (0.7 – 3.2 ккал/моль) создают условия для динамического усреднения констант СТВ. Усреднение по минимумам ППЭ привело к значениям *a*(F): 101 (2F), 15 (4F) и 34 (4F) Гс, близким к наблюдаемым величинам 96, 21 и 39 Гс.

В пятой главе рассмотрено влияние молекулярной и ионмолекулярной ассоциации на первичные ионизационные процессы, происходящие при облучении жидких растворов диметиловых полиэтиленгликолей (глимов) $R(-O-CH_2-CH_2-)_nO-R$ эфиров R'(-O-CH₂-CH₂-)₂O-R', $(\mathbf{R} = \mathbf{CH3}.$ n = 1 - 4). и их аналогов. R' = CH₂CH₃ (диэтиловый эфир этиленгликоля) или CH₂CH₂Cl (дихлордиэтиловый эфир этиленгликоля), а также этиленкарбоната (ЕС). Исследования проводилисть методом ВМЭ.

Наблюдаемый магнитный эффект, в случае КР диметиловых эфиров полиэтиленгликолей, не зависел от количества полимерных звеньев в цепи (*n*) и не менялся при замене метильных групп на этильные или этилхлорные [21]. Было показано, что форма кривых ВМЭ определяется не первичными КР, а катион-радикальными продуктами их распада; образование вторичных КР протекает очень быстро – высота энергетических барьеров не превышает 2-3 ккал/моль; трансформация первичных КР затрагивает только общий для всех соединений фрагмент – звено -O-CH₂-CH₂-O-; наблюдаемый магнитный эффект может быть описан взаимодействием неспаренного электрона с четным числом протонов, имеющих константы СТВ, модуль которых ≤ 20 Гс.

Независимость магнитного эффекта от *n* позволила выполнить расчёты (B3LYP/6-31+G*) для наиболее простого представителя ряда – 1,2-диметоксиэтана (моноглима). Продукты распада его КР – КР метилвинилового эфира, CH₃-O-CH=CH₂^{+*}, и два дистонических КР: CH₃-OH⁺-CH₂-CH₂-O-CH₂^{*} (ДКР1) и CH₃-OH⁺-CH₂-CH₂^{*} (ДКР2).

Последовательно пронумеровав тяжелые атомы (верхние индексы): $C^{1}H_{3}$ - O^{2} - $C^{3}H_{2}$ - $C^{4}H_{2}$ - O^{5} - $C^{6}H_{3}$, мы можем представить путь распада КР моноглима с образованием КР метилвинилового эфира и молекулы метилового спирта как перенос протона от C^{3} к O^{5} и последующий разрыв связи C^{4} - O^{5} . Согласно расчётам, процесс сопряжен с преодолением значительного (> 25 ккал/моль) энергетического барьера. Мы показали, что в качестве катализатора может выступать соседняя молекула моноглима (М). Координата реакции (рис. 16) включает последовательное образование водородных связей: сначала – между мигрирующим протоном и атомом кислорода М, C^{3} - $H^{...}O$, а затем – энергетически более выгодных O^{5} ...H-O и O^5 -H···O связей. В расчётах продуктом бимолекулярной реакции является трехчастичный ассоциат (рис. 16), энергия которого на ~12 ккал/моль ниже энергии предреакционного комплекса, энергетические барьеры на пути реакции пренебрежимо малы. В ходе процесса подвижность мигрирующего протона постоянно ограничена близкорасположенными атомами кислорода, что исключает его перехват третьей молекулой или уход «на бесконечность». Найденный путь реакции удовлетворяет требованиям, сформулированным на основе экспериментальных наблюдений.

Рисунок 16. Бимолекулярный канал распада КР моноглима; с образованием КР метилвинилового эфира. Показан только мигрирующий протон. Серые ромбы – ПС.

Альтернативный путь трансформации КР моноглима, ведущий к образованию дистонических КР, требует преодоления высоких ($\Delta E^a \sim 20 \div 30$ ккал/моль) энергетических барьеров в случае изолированного КР. В бимолекулярном варианте реакции образование ДКР1 протекает сравнительно легко, однако последующая трансформация комплекса [ДКР1…M], ведущая к ДКР2, связана с преодолением барьера, ΔE^a которого превышает 20 ккал/моль.

Рассчитанные для КР метилвинилового эфира константы СТВ с протонами (-18, -17, 8, -3 Гс) хорошо согласуются с данными ЭПР в замороженных фреоновых матрицах [15]. Моделирование экспериментальных кривых ВМЭ на основе набора констант СТВ (a(2H)=-16.4, a(3H)=5.8, a(1H)=-2.9 Гс), достаточно близкого к расчётному, позволило описать основные особенности этих кривых.

Полученные результаты позволяют полагать, что быстрое образование вторичных КР вида R'-O-CH=CH₂^{.+} является общим пу-

тём распада КР различных глимов и их аналогов в условиях облученных жидких растворов. Процесс катализируется соседней молекулой глима.

Результаты экспериментов по импульсному радиолизу привели к ставшей общепринятой концепции [22 и ссылки там] о том, что возникающие при облучении полярных жидкостей первичные КР очень быстро реагируют с молекулами окружения, отдавая протон, или принимая атом водорода. Образуются две независимые частицы – катион и нейтральный радикал. Недавно были получены результаты [16; 17] противоречащие данной концепции. Анализ влияния внешнего магнитного поля на радиационно-индуцированную флуоресценцию растворов люминофора в ЕС и пропиленкарбонате показал, что интенсивность этой флуоресценции определяется геминальной рекомбинацией ионных пар, в состав которых входит некий КР, характеристики которого зависят от раствора, а время жизни доходит до нескольких десятков наносекунд. Было предположено [18], что таким КР является симметричный КРД, в частности – (ЕС)₂⁻⁺.

Созданная квантовохимическая модель ионизации EC [22], позволила описать оба варианта событий в облучённых полярных жидкостях, обеспечив снятие противоречия между экспериментальными данными. Мы рассмотрели ионизацию изолированной молекулы EC и, исходя из литературных данных о склонности молекул EC к самоассоциации, ионизацию молекулярного димера (EC)₂ - простейшего из возможных ассоциатов.

Изолированная молекула ЕС имеет симметрию C_2 . Релаксация геометрии после ионизации приводит к структуре $C_2(^2B)$, отвечающей глобальному минимуму ППЭ ЕС⁺⁺. ОЗМО этой структуры может быть отнесена к о-МО (рис. 17). Отрыв протона от ЕС⁺⁺ ведёт к 4-(1,3-диоксациклопентан-2-он)радикалу (**R**⁺), который является π -радикалом (рис. 17, вставка). Следовательно, отщепление протона от структуры минимальной энергии требует изменения типа ОЗМО, то есть, запрещено по симметрии. Путь реакции в этом случае будет путём обхода конического пересечения о и π термов.

На рис. 17 показано соответствующее сечение ППЭ ЕС⁺⁺. Реакционная координата представляет собой несимметричное внеплоскостное искажение КР, которое смешивает σ и π МО, что отражается в строении ОЗМО ПС (TS). Конечная структура $C_s(^2A'')$ отвечает π -состоянию ЕС⁺⁺ и локальному минимуму его ППЭ. Изменение электронного состояния EC⁺⁺ требует достаточно больших (~15 ккал/моль) энергетических затрат, однако запрет по симметрии оказывается снят – перенос протона со структуры $C_s(^2A'')$ на приближающуюся молекулу EC осуществляется безбарьерно.

Рисунок 17. Сечение ППЭ EC⁺⁺, вдоль координаты, связывающей минимумы $C_2(^2\text{B})$ и $C_s(^2\text{A''})$. Изменение ОЗМО. Вставка: ОЗМО радикала **R**⁺ (см. текст). CAM-B3LYP/6-31+G*.

Расчёты молекулярного димера (ЕС)₂ привели к локализации большого числа структур, отвечающих минимумам ППЭ. Наиболее стабильные – структуры «голова-хвост» **I** - **V** (рис. 18 снизу). Их энергии связывания, E_b , составили 7.8 – 9.3 ккал/моль (САМ-B3LYP/6-31+G*). Схема ионизации для этих структур изображена на рис. 18. Мы рассмотрели удаление электрона с B3MO и с B3MO-1 для симметричных структур **I**, **III**, **IV** и только с B3MO для несимметричных структур **II** и **V**. Симметрия возникающих катионрадикальных состояний указана над уровнем энергии исходной нейтральной структуры. В результате ионизации (ЕС)₂ образуются четыре катион-радикальные структуры: $1^{+*} - 4^{+*}$, которые соответствуют минимумам¹ ППЭ (ЕС)₂^{*+}.

Структура 2^{•+} – это ассоциат КР и молекулы ЕС. ОЗМО структуры 3^{•+} делокализована по обоим фрагментам, но эти фрагменты неэквивалентны. Структура 4^{+•} является ассоциатом [R[•] + C⁺]². Она возникает как результат безбарьерного переноса протона, инициированного ионизацией нейтральных димеров IV и V (рис. 18). Можно полагать, что последний канал трансформации ионизованных димеров (ЕС)₂ и отвечает очень быстрому образованию нейтральных радикалов, наблюдаемому при радиолизе.

¹ Строго говоря, структура **4**^{+•} уже не является КРД этиленкарбоната, но для простоты изложения понятие «КРД» и обозначение «(EC)₂^{•+}» использованы и для димерных структур с разделёнными спином и зарядом.

² С⁺ – это 2-(1,3-диоксациклопентан-2-ол) катион

Рисунок 18. Схема ионизации (ЕС)₂ и переходов между структурами $(EC)_2^{+*}$. Уровни энергии для нейтральных структур показаны серым цветом, катион-радикальных – красным. Стрелки отражают соответствие исходных катион-радикальных состояний структурам $(EC)_2^{+*}$ с релаксированной геометрией. Номера структур, соответствующих ПС структурных превращений $(EC)_2^{+*}$, даны красным цветом. Значения соответствующих энергетических барьеров приведены курсивом.

Таким образом, ионизация ЕС, в зависимости от строения молекулярных димеров, существующих ещё до облучения, может приводить к образованию как долгоживущих частиц – носителей спина и заряда (структур 1^+), так и структур 4^+ , которые являются продуктом безбарьерного переноса протона.

Мы также провели расчёты сечений ППЭ (ЕС)₂⁺⁺ вдоль координат предполагаемых трансформаций структур $1^{++} - 3^{++}$ с целью оценить их стабильность по отношению к взаимным и иным превращениям. Найденные реакционные пути изображены на рис. 18 сверху. Трансформации $3^{++} \leftrightarrow 2^{++} \rightarrow 1^{++}$, протекающие с низкими энергетическими барьерами, могут увеличить выход катионрадикального продукта. Трансформации $2^{++} \leftrightarrow 3^{++} \rightarrow 4^{++}$ и $2^{++} \rightarrow 5^{++}$, отвечающие переносу атома водорода от молекулы ЕС к ЕС⁺⁺, требуют преодоления достаточно высоких энергетических барьеров.

Причина, по которой депротонирование (отрыв атома водорода) связано с преодолением значительного энергетического барьера в случае димера [EC⁺⁺...EC], но может происходить самопроизвольно при ионизации (EC)₂, заключается в том, что фрагментные МО димеров **IV** и **V**, в отличие от орбиталей EC⁺⁺, не могут быть отнесены к σ или π типу, поэтому запрет по симметрии на распад КР, образованного ионизацией этих димеров, отсутствует.

Из полученных результатов следует, что:

- высокоэнергетическое воздействие на молекулярные ассоциаты может индуцировать одновременно несколько каналов трансформации облученной среды. Учёт этого факта позволяет примирить противоречивые, на первый взгляд, экспериментальные данные по ионизации жидких карбонатов;

- спиновая и зарядовая плотность в структуре 1⁺ практически полностью локализована на карбонильных фрагментах, поэтому можно ожидать образования подобных комплексов и в случае других алифатических карбонатов, а возможно, и иных соединений с карбонильными группами;

- существует необходимость пересмотра существующей концепции процесса первичной ионизации для тех полярных апротонных жидкостей, которые, подобно этиленкарбонату, имеют тенденцию образовывать молекулярные ассоциаты – для этих жидкостей анализ процессов ионизации следует начинать с рассмотрения потери электрона такими ассоциатами. В последнем параграфе главы обсуждается орбитальная изомерия $(EC)_2^+$, связанная со знаком, с которым ОЗМО фрагментов входят в ОЗМО димера. Показано, что структуры 1^+ и 3^+ являются такими изомерами.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

Предложен и апробирован теоретический подход к изучению структуры и реакционной способности органических ион радикалов (ИР), а также их ассоциатов с нейтральными молекулами. Подход основан на квантовохимических расчётах адиабатических поверхностей потенциальной энергии (ППЭ). Перспективность его применения доказана решением ряда конкретных научных задач.

- ППЭ ИР более тридцати низкосимметричных циклических молекул, в частности: анион-радикалов (АР) функциональных производных (поли)фтор-содержащих бензолов, некоторых полифторнафталинов и 4-аминононафторбифенила, катион радикалов (КР) алкил-замещённых циклогексанов и изомерных декалинов, впервые изучены на уровне ДФТ-расчётов. Показано, что эти ППЭ обладают такими особенностями потенциальных поверхностей ян-теллеровских ионов, как коническое пересечение и его обход по координате псевдовращения. Псевдовращение служит механизмом переноса плотности неспаренного электрона (дырки) между различными положениями циклов и может проявляться в физико-химических свойствах ИР.
- 2. Дана интерпретация спектральных (ЭПР) параметров структурно нежёстких ион-радикалов, в том числе впервые зарегистрированных соавторами в рамках совместных работ.
- 3. На основе анализа строения ППЭ и квантовохимического моделирования путей мономолекулярной фрагментации АР полифторароматических соединений впервые объяснены закономерности восстановительного гидродефторирования соответствующих полифтораренов.

Показано, что селективность восстановительного гидродефторирования орто- и мета-перфторксилолов, а также 3-хлор-2,4,5,6-тетрафторпиридина, противоречащая данным о прочности расщепляющихся связей (С_{Ar}—F и С_{Alk}—F или C—Cl и C—F), детерминирована соотношением активационных барьеров конкурирующих каналов фрагментации соответствующих AP. Обнаружена связь неселективного протекания восстановительного гидродефторирования 2-аминогептафторнафталина и некоторых полифторбензойных кислот с наличием на ППЭ соответствующих АР минимумов, отвечающих стационарным структурам с разной локализацией ОЗМО.

На конкретном примере показано, что выбор растяжения связи C-Hal в качестве координаты реакции не пригоден для поиска переходных состояний мономолекулярной фрагментации AP галогенароматических молекул с отрывом аниона Hal⁻ в тех случаях, когда заметный вклад в реакционный механизм вносит псевдовращение.

- 4. Нестабильность АР пентафторанилина в неполярных растворителях объяснена отщеплением фторид-иона из *орто*-положения к аминогруппе, взаимодействие с протоном которой стабилизирует уходящий анион.
- 5. Впервые сформулирована и рассмотрена на ряде объектов проблема сохранения структурной нежёсткости ян-теллеровских ИР ароматических молекул при их ассоциации с молекулой окружения – растворителя или нейтрального предшественника. Показано, что структурная нежёсткость возникающих ассоциатов складывается из структурной нежёсткости составляющих их частиц и легкости движения этих частиц относительно друг друга.

Установлено строение ППЭ сэндвичевых димеров (C_6H_6)₂ и (C_6H_6)₂^{+*}. В основе путей их трансформации лежит псевдовращение, которое приводит к эффективной D_{6h} симметрии нейтрального димера и является причиной усреднения констант СТВ в (C_6H_6)₂^{+*}.

Показано, что возможность образования анион-радикальных димеров полифтораренов определяется балансом энергий ион-молекулярных взаимодействий и псевдо-ян-теллеровской стабилизации.

- 6. Установлено, что всем ион-радикальным гомодимерам, изученным в работе, присуща орбитальная изомерия, связанная с узловыми свойствами ОЗМО. Сделан вывод о необходимости анализа данного типа изомерии при рассмотрении подобных объектов.
- Предложена квантовохимическая модель ионизации этиленкарбоната которая показала, что в условиях экспериментов происходит ионизация молекулярных ассоциатов, а не отдельных мо-

лекул этиленкарбоната. Результат позволил снять противоречие в интерпретации экспериментальных данных

Публикации автора по теме диссертации

- Shchegoleva, L.N. Potential energy surface as a key to understanding the structure and properties of short-living radical ions of cyclic organic molecules. / L.N. Shchegoleva, I.V. Beregovaya // Int. J. Quant. Chem. – 2016. – V. 116. – P. 161-173.
- <u>2.</u> Блинкова, С.В. Изучение структурных особенностей анион-радикала 1,3,5-трифторбензола методами оптически детектируемого ЭПР и квантовой химии / С.В. Блинкова, М. М. Вьюшкова, Л.Н. Щеголева, И.В. Береговая, В.А. Багрянский, Ю.Н. Молин // Изв. АН, Сер. хим. – 2013. – № 11. – С. 2311-2316.
- 3. Blinkova, S.V. Intramolecular dynamics of the 1,2,4-trifluorobenzene radical anion: an optically detected EPR and quantum chemistry study / S.V. Blinkova, L. N. Shchegoleva, I. V. Beregovaya, M. M. Vyushkova, V. A. Bagryansky, Yu. N. Molin // Appl. Magn. Reson. – 2011 – V. 41(2). – P. 229-238.
- 4. Боровков, В. И. Время разрешенный магнитный эффект как метод изучения ион-радикальных пар с быстрой эволюцией спинового состояния / В.И. Боровков, И.В. Береговая, Л. Н. Щеголева, С. В. Блинкова, Г. А. Летягин, В. А. Багрянский, Ю. Н. Молин // ДАН 2015. Т. 462. № 2. С. 178-181.
- 5. Beregovaya, I.V. Pseudorotation as a Mechanism for Intramolecular Electron Density Transfer. Fragmentation of the Octafluoronaphthalene Radical Anion / I.V. Beregovaya, L.N. Shchegoleva // J. Fluorine Chem. 2014. V.163. P. 1-6.
- <u>6.</u> Laev, S.S. N-Acetylation as a means to activate polyfluoroarylamines for the selective ortho-hydrodefluorination by zinc in aqueous ammonia: a concise route to polyfluorobenzoazoheterocycles / S. S. Laev, L. Yu. Gurskaya, G. A. Selivanova, **I. V. Beregovaya**, L. N. Shchegoleva, N. V. Vasil'eva, M. M. Shakirov, V. D. Shteingarts // *Eur. J. Org. Chem.*, 2007. P. 306-316.
- 7. Borovkov, V.I. Structure and Stability of Pentafluoroaniline and 4-Aminononafluorobiphenyl Radical Anions: Optically Detected EPR, Time-Resolved Fluorescence, Time-Resolved Magnetic Field Effect, and Quantum Chemical Study / V.I. Borovkov, I.V. Beregovaya, L.N. Shchegoleva, S.V. Blinkova, D.A. Ovchinnikov, L.Yu. Gurskaya, V.D. Shteingarts, V.A. Bagryansky, Yu.N. Molin // J. Phys. Chem. A – 2015. – V. 119 (31). – P. 8443-8451.
- Mashkantsev, D.E. Position-Dependent Fragmentation Mechanism for Radical Anions of Fluorinated Benzoates / D.E. Mashkantsev, I.V. Beregovaya, L.N. Shchegoleva // J. Fluorine Chem. – 2016. – V.188. – P. 171-176.

- <u>9.</u> Береговая, И.В. Анион-радикал перфторбензоциклобутена структурно нежесткая частица / И.В. Береговая, Л.Н. Щеголева, В.И. Боровков, В.М. Карпов // Журн. структур. химии – 2019. – Т. 60. – № 3. – С. 392-395.
- Selivanova, G.A. Hydrodefluorination of polyfluoro-2-naphthylamines by Zn in aqueous NH3: A correlation of the product distribution and the computationally predicted regioselectivity of the substrate radical anion fragmentation / G. A. Selivanova, A. V. Reshetov, I. V. Beregovaya, N. V. Vasil'eva, I. Yu. Bagryanskaya, V. D. Shteingarts // J. Fluorine Chem. – 2012. – V.137. – P.64-72.
- 11. Reshetov, A.V. Hydrodefluorination of N-acetylheptafluoro-2-naphthylamine by zinc in aqueous ammonia: synthetic outcomes and mechanistic considerations / A.V. Reshetov, G.A. Selivanova, L.V. Politanskaya, I.V. Beregovaya, L.N. Shchegoleva, N.V. Vasil'eva, I.Yu. Bagryanskaya, V.D. Shteingarts // ARKIVOC - 2011(viii) - P. 242-262.
- 12. Andreev, R.V., Unexpected hydrodefluorination of 3-Cl-tetrafluoropyridine. Interpretation through analysis of the potential energy surface for its radical anion / R.V. Andreev, I. V. Beregovaya, L. N. Shchegoleva // J. Fluorine Chem., - 2020. - V. 234 - 109513.
- 13. Andreev, R.V. Fragmentation of intermediate radical anions determines the main features of the hydrodefluorination of isomeric perfluoroxylenes. Quantum chemical substantiation / R.V. Andreev, I. V. Beregovaya, L. N. Shchegoleva // J. Fluorine Chem. – 2022 – V. 257-258. – 109976.
- 14. Боровков, В.И. Псевдовращение как возможная причина быстрой парамагнитной релаксации в ион-радикалах с вырожденным или квазивырожденным основным состоянием / В.И. Боровков, **И.В. Береговая**, Л.Н. Щеголева, В.А. Багрянский, Ю.Н. Молин // ДАН 2009. Т. 426. № 5. С. 639-643.
- 15. Borovkov, V.I. Radical ions with nearly degenerate ground state: Correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface / V.I. Borovkov, I.V. Beregovaya, L.N. Shchegoleva, P.A. Potashov, V.A. Bagryansky, Yu.N. Molin // J. Chem. Phys. – 2012. – V. 137. – P. 104305-104318.
- 16. Beregovaya, I.V. Pseudorotation in Radical Cations of low-symmetric decalin molecules / I. V. Beregovaya, L. N. Shchegoleva, V. I. Borovkov // J. Phys. Chem. A. – 2009 – V. 113(8) – P. 1555-1558.
- 17. Береговая, И.В. Поверхность потенциальной энергии и константы протонного СТВ катион-радикала циклопентана / И.В. Береговая, Л.Н. Щеголева // Журн. структур. химии 2012. Т. 53. № 2. С. 242-248.
- 18. Береговая, И.В. Псевдовращение катион-радикала бензола, ассоциированного с молекулой HCN или CH₃CN / И.В. Береговая, Р.В. Андреев, Л.Н. Щеголева // Журн. структур. химии – 2019 – Т. 60 – № 10. – С. 1643-1648.

- 19. Beregovaya, I.V. Potential energy surfaces of a stacked dimer of benzene and its radical cation: what remains and what appears / I.V. Beregovaya, L.N. Shchegoleva // Phys. Chem. Chem. Phys. – 2022 – V. 24 (29) – P. 17547-17560.
- <u>20.</u> Beregovaya, I.V. Dimer Radical Anions of Polyfluoroarenes. Two More to a Small Family / I.V. Beregovaya, L.N. Shchegoleva, D.A. Ovchinnikov, S.V. Blinkova, V.I. Borovkov, R.V. Andreev, V.A. Bagryansky, Yu.N. Molin // J. Phys. Chem. A – 2019. – V. 123 (51) – P. 10968–10975.
- 21. Taletskiy, K.S., Radical Cationic Pathway for the Decay of Ionized Glyme Molecules in Liquid Solution / K.S. Taletskiy, V.I. Borovkov, L.N. Shchegoleva, I.V. Beregovaya, A.I. Taratayko, Yu.N. Molin // J Phys. Chem. B – 2015. – V. 119 (45). – P. 14472-14478.
- 22. Beregovaya, I.V. An Updated View of Primary Ionization Processes in Polar Liquids / I.V. Beregovaya, I.S. Tretyakova, V.I. Borovkov // J. Phys. Chem. Letters - 2021. - V. 12 (47). - P. 11573-11577.

Тезисы докладов автора по теме диссертации

- 23. Береговая, И. Подход супермолекулы в исследованиях органических ион-радикальных интермедиатов / И. Береговая [и др.] // Всероссийская научная конференция с международным участием "Современные Проблемы Органической Химии" Тезисы докладов. Новосибирск, 9-11 июня 2021. С. 30.
- <u>24.</u> Береговая, И.В. Потенциальные поверхности в изучении свойств ион-радикальных интермедиатов органических реакций / И.В. Береговая, Л.Н.Щеголева // Всероссийская конференция по квантовой и математической химии, Сборник тезисов докладов. 13-17 ноября 2017, г. Уфа. – С.31.
- 25. Береговая, И.В. Механизм мономолекулярной фрагментации анионрадикалов галогенаренов с отщеплением галогенид-иона. Теоретическое исследование / И.В. Береговая, Л.Н.Щеголева // Всероссийская научная конференция с международным участием «Современные проблемы органической химии»: Сборник тезисов. Новосибирск, 5-9 июня 2017. – С. 61.
- 26. Beregovaya, I.V. Structure and HFC parameters of organic radical ions. DFT calculations/ I.V. Beregovaya, L.N. Shchegoleva // International School for Young Scientists. Magnetic Resonance and Magnetic Phenomena in Chemical and Biological Physics. Sept. 4-8, 2016, Novosibirsk, Russia. Book of Abstracts. – P. 8, 71-73.
- 27. Beregovaya, I.V. Potential energy surface and fragmentation of the octafluoronaphtalene radical anion / I.V. Beregovaya, L.N. Shchegoleva // VIII International Voevodsky Conference. Physics and Chemistry of Elementary Chemical Processes. Akademgorodok, Novosibirsk. 2012. Book of Abstracts. P. 125.

- 28. Bagryansky, V.A. Radical anions of fluorobenzenes in irradiated solutions / V.A. Bagryansky, M.M. Vyushkova, S.V. Blinkova, L.N. Shchegoleva, I.V. Beregovaya, Yu.N. Molin // DAE-BRNS Eleventh Biennial Trombay Symposium on Radiation & Photochemistry. (TSRP-2012), Trombay, BARC, India. 2-7 January 2012. – P. 19-21.
- 29. V.I. Borovkov Spin-lattice relaxation of open-shell molecular systems with nearly degenerate ground state: role of intramolecular pseudorotation / V.I. Borovkov, I.V. Beregovaya, L.N. Shchegoleva, P.A. Potashov, V.A. Bagryansky1, Yu. N. Molin // 3rd Topical Meeting on Spins in Organic Semiconductors (SPINOS III), Amsterdam, The Netherlands, August 30 September 3, 2010. P. 105.
- 30. Beregovaya, I.V. Potential Energy Surfaces of Some Low-Symmetrric Cycloalkane Radical Cations. Correlation with the Times of Paramagnetic Relaxation in Solutions / I.V. Beregovaya, L.N. Shchegoleva, V.I. Borovkov, V.A. Bagryansky, Yu.N. Molin // Book of Abstracts of the 12th V.A. Fock Meeting on Quantum and Computational Chemistry, Kazan. - 2009. – P. 61.

Литература

- Shchegoleva, L.N. Potential energy surface of C₆F₆⁻⁻ radical anion / L.N. Shchegoleva, I.V. Beregovaya, P.V. Schastnev // Chem. Phys. Letters. – 1999. – Vol. 312 (2-4). – P. 325-32.
- Beregovaya, I.V. Potential energy surfaces of fluorobenzene radical anions / I.V. Beregovaya, L.N. Shchegoleva // Int. J. Quant. Chem. – 2002. – Vol. 88 – P. 481–488.
- 3. Hou X.-J. Structure of the hexafluorobenzene anion / X.-J. Hou, M-B. Huang // J. Mol. Struct. (Theochem) 2003. Vol. 638. P. 209–214.
- 4. Barlukova, M.M. Intramolecular dynamics of 1,2,3-trifluorobenzene radical anions as studied by OD ESR and quantum-chemical methods / M.M. Barlukova [et al.] // *J. Phys. Chem. A.* 2005. Vol. 109 (19). P. 4404–4409.
- Werst, D.W. Solvent effects in nonpolar solvents: Radical anion reactions / D.W. Werst // Chem. Phys. Letters. – 1993. – Vol. 202 (1-2). – P. 101-107.
- Beregovaya, I.V. Potential energy surface and dissociative cleavage of chlorobenzene radical anion / I.V. Beregovaya, L.N. Shchegoleva, // Chem. Phys. Letters. - 2001. - Vol. 348. - P. 501-506.
- Laev, S. S. Reductive defluorination of perfluoroarenes by zinc in aqueous ammonia / S. S. Laev, V. D Shteingarts // J. Fluorine Chem. – 1998 – Vol. 91. – P. 21–23.
- Konovalov, V.V. Fragmentation of radical anions of polyfluorinated benzoates / V.V. Konovalov [et al.] // J. Phys. Chem. A. – 2000. – V.104. – P. 352.
- Краснов, В.И. Восстановительные превращения фторорганических соединений. II. Гидродехлорирование полифторхлораренов цинком / В.И.

Краснов, В.Е. Платонов // ЖОрХ. – 2000. – Т. 36 (10). – С. 1488 – 1499.

- Krasnov, V. I. Transformation of perfluoroxylenes and perfluoro-p-cymene under the action of Zn(Cu)-DMF-H2O / V.I. Krasnov [et al.] // *Tetrahedron*. - 1997. – Vol. 53. – P. 1797-1812.
- Shiotani, M. Radical cations of cyclohexanes alkyl-substituted on one carbon: an ESR study of the Jahn–Teller distorted HOMO of cyclohexane / M. Shiotani, M. Lindgren, N. Ohta, T. Ichikawa // J. Chem. Soc. Perkin Trans. 1991. Vol. 2. P. 711–719.
- Melekhov, V.I. The electronic structure of cis- and trans-decalin radical cations in halocarbon matrices: an ESR and MNDO study / V.I. Melekhov [et al.] // Chem. Phys. Lett. –1990. Vol. 174(1) P. 95–102.
- Błoch-Mechkour, A. Electromers of the benzene dimer radical cation / A. Błoch-Mechkour, T. Bally // Phys. Chem. Chem. Phys. 2015. Vol. 17. P. 10624 10629.
- Vyushkova, M.M. Optically detected ESR spectrum of decafluorobiphenyl radical anion / M. M. Vyushkova [et al.] // *Mendeleev Commun.* – 2006. – P. 151–152.
- Knolle, W. Lowtemperature EPR study of radical cations of vinyl ethers in a freon matrix / W. Knolle I. Janovský, S. Naumov, R. Mehnert // *Radiat. Phys. Chem.* – 1999. – Vol. 55, – P. 625–631.
- Borovkov, V. I. Do primary carriers of both positive charge and unpaired electron spin exist in irradiated propylene carbonate? / V.I. Borovkov // *Phys. Chem. Chem. Phys.* – 2017. – Vol. 19. – P. 49–53.
- Borovkov, V. I. Unexpectedly large spin coherence effects in the recombination fluorescence from irradiated highly polar solutions on a nanosecond time scale / V. I. Borovkov // J. Phys. Chem. B 2017. Vol. 121. P. 9422–9428.
- Третьякова, И.С. Первичные катион-радикалы в облучённом этиленкарбонате / И.С. Третьякова, В.И.Боровков // ДАН – 2020. – 494. – № 1. – С. 67–71.