ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертационную работу Трепаковой Александры Игоревны «Развитие метода магнитно-резонансной визуализации по ядрам ¹³С и ¹⁵N поляризованных параводородом молекул»,

представленную на соискание ученой степени кандидата физико-математических наук по специальности 1.3.17 – химическая физика, горение и взрыв, физика экстремальных состояний вещества

Диссертационная работа Трепаковой Александры Игоревны посвящена развитию магнитно-резонансной томографии (MPT) с регистрацией сигнала по гетероядрам ¹³С и ¹⁵N с использованием двух методов гиперполяризации — индуцированной параводородом поляризации ядер (ИППЯ) и усиление сигнала в процессе обратимого обмена (SABRE). Соискателем получены новые экспериментальные данные по регистрации двухмерных и трехмерных изображений.

Актуальность темы связана с тем, что МРТ имеет ряд преимуществ и в настоящее время активно используется как в научных работах, так и в медицинской диагностике. Однако метод МРТ имеет основной недостаток — низкую чувствительность метода, которая возникает из-за малой разницы населенностей спиновых уровней в условиях теплового равновесия. В настоящий момент проблема низкой чувствительности решается мировым научным сообществом применением различных методов гиперполяризации. Методы гиперполяризации на основе параводорода, которые использовались соискателем в данной работе, просты в использовании и требуют меньших денежных затрат по сравнению с альтернативными методами гиперполяризации. Важной и трудоемкой задачей является объединение методов гиперполяризации и регистрации МРТ изображений. Выполнение данной задачи позволяет развить метод МРТ и внедрить методы гиперполяризации на основе параводорода в медицинскую практику. Поэтому данная работа является, несомненно, актуальной и необходимой.

Практическая значимость работы заключается в получении изображений МРТ с применением методов гиперполяризации на основе параводорода и регистрации сигнала по гетероядрам ¹³С и ¹⁵N. Например, с использованием метода SLIC-SABRE были получены изображения по ядрам ¹⁵N таких соединений как ¹⁵N-никотинамид, фампридин, ¹⁵N-фампридин, 4-диметиламинопиридин, причем для ¹⁵N-фампридина получено как двумерное, так и трехмерное изображения. В работе также продемонстрировано сравнение двух методов переноса поляризации на гетероядро ¹³С (использование слабых магнитных полей и применение импульсных последовательностей PH-INEPT+ и PH-ECHO-INEPT+) в экспериментах МРТ. Для подхода с использованием метода SABRE и слабых магнитных полей для переноса поляризации была показана возможность получения изображений по

гетероядру 15 N от таких соединений как 15 N₃-ниморазол, 15 N₂-метронидазол и 15 N₃-метронидазол, которые могут в дальнейшем использоваться в качестве контрастных агентов.

Достоверность выполненных автором исследований не вызывает сомнений.

Диссертационная работа состоит из введения, трех глав, заключения, выводов и приложения. Текст работы изложен на 171 странице и содержит 58 рисунков. Библиография включает 172 наименования. Работа оформлена в соответствии с требованиями ВАК и написана понятным научным языком.

Автореферат диссертации соответствует содержанию диссертации.

Во введении обоснована актуальность исследования, сформулированы цель и задачи работы. Описана научная новизна, теоретическая и практическая значимость. Также приведены научные положения, которые выносятся соискателем на защиту, указан личный вклад автора. Представлены публикации автора по теме диссертации.

В первой главе представлен литературный обзор, в котором были описаны, существующие методы гиперполяризации, особенное внимание уделено методам на основе параводорода. Представлено описание методов по переносу поляризации на гетероядро в экспериментах с использованием ИППЯ и SABRE. Соискателем представлено описание существующих работ по гетероядерной томографии. Приводится описание используемых в работе молекул и их значимость для биомедицинских или химических исследований. В данной главе также приводится обоснование необходимости исследования.

Во второй главе диссертационной работы содержится описание методик экспериментов, способов обогащения водорода параводородом. Отдельным разделом представлено подробное описание параметров импульсных последовательностей для томографии.

Третья глава диссертации посвящена демонстрации полученных результатов и их анализу. На примере молекул ¹³С-этилацетата и ¹³С-аллилпирувата проведено сравнение методов по переносу поляризации на ядро ¹³С. Получены высокие уровни поляризации ¹³С и двумерные изображения с регистрацией сигнала по ядрам ¹³С. Показано, что наиболее оптимальным методом является метод с использованием слабых магнитных полей. Для молекул ¹⁵N₃-ниморазола, ¹⁵N₂-метронидазола и ¹⁵N₃-метронидазола была показана возможность создания гиперполяризации на ядре ¹⁵N с использованием метода SABRE и слабых магнитных полей для переноса поляризации на ядро ¹⁵N. Для всех соединений получены изображения МРТ. Соискателем представлен подход SLIC-SABRE, который позволил зарегистрировать изображения МРТ таких молекул как ¹⁵N-пиридин, ¹⁵N-никотинамид, фампридин, 4-диметиламинопиридин, ¹⁵N-фампридин. Показано, что наиболее

оптимальной импульсной последовательностью для регистрации MPT в случае с использованием SLIC-SABRE является последовательность градиентного эха FLASH.

В заключении описаны полученные результаты работы.

А.И. Трепаковой получен ряд новых результатов:

- 1. Показано, что наиболее эффективным методом по переносу поляризации на гетероядро ¹³С в экспериментах ИППЯ является метод с использованием слабых магнитных полей.
- 2. Продемонстрирована возможность получения MPT изображений по ядрам ¹³С в экспериментах с использованием импульсных последовательностей типа INEPT для переноса поляризации на гетероядро.
- 3. Показано, что для таких молекул как 15 N₂-метронидазол, 15 N₃-метронидазол и 15 N₃-ниморазол возможна регистрация MPT изображений по ядрам 15 N с использованием метода гиперполяризации SABRE и слабых магнитных полей для переноса поляризации на ядро 15 N.
- 4. Показано, что метод SLIC-SABRE позволяет значительно усилить сигнал и зарегистрировать MPT изображения по ядрам ¹⁵N таких соединений как ¹⁵N-никотинамид, 4-диметиламинопиридин, фампридин и ¹⁵N-фампридин. Продемонстрировано, что наиболее подходящей импульсной последовательностью для регистрации MPT сигнала является последовательность FLASH. Экспериментально установлено, что уровни поляризации фампридина и обогащенного изотопом ¹⁵N фампридина отличаются в два раза.

Результаты работы достаточно широко представлены и обсуждены на международных и отечественных научных конференциях и опубликованы в рейтинговых международных научных журналах. Работа имеет несомненное практическое значение.

По содержанию диссертации имеются следующие вопросы и замечания:

- 1. При описании физических принципов работы метода магнитно-резонансной томографии и явления ЯМР в целом упор сделан на классическое векторное представление. Однако в контексте всей диссертационной работы (с учетом активного манипулирования спиновой системой посредством изощренных импульсных последовательностей) более уместным было бы представление этого раздела в современных квантово-механических терминах (с использованием понятий матрицы плотности, спинового гамильтониана).
- 2. При описании сущности ядерной магнитной релаксации необходимо было упомянуть флуктуации локальных магнитных полей как основную причину рассеяния энергии спиновой системой. Это позволило бы, в том числе, более ясно представить в тексте работы значимость механизма парамагнитной релаксации, обусловленной превалированием электронного магнитного момента над ядерным (в 658 раз).

- 3. Из текста диссертационной работы не очень понятно, как технически осуществлялся перенос исследуемых систем из слабого (нулевого) магнитного поля в ЯМР спектрометр и обратно, а именно применялась ли популярная для таких исследований пневматическая система (движение ампулы сжатым воздухом с большой скоростью по шахте между соосно установленными ЯМР магнитом и резервуаром) или работа осуществлялась ручным перемещением.
- 4. Как известно, малый диапазон шкалы химических сдвигов протонов позволяет в большинстве случаев избежать артефактов химического сдвига на протонных МР изображениях. В тексте диссертационной работы не освещено, стоит ли ожидать появления таких артефактов в гетероядерной МРТ в связи с широким диапазоном шкалы химических сдвигов ядер ¹³С и ¹⁵N.
- 5. В тексте работы присутствуют опечатки (например, на стр.11, 12, 66, 77); также стилистически верно было бы использовать русскоязычную аббревиатуру для SABRE (по аналогии с ИППЯ), и наоборот, англоязычную для 2М (общепринято обозначать как 2D).

Приведенные замечания в целом не меняют общего положительного впечатления о выполненной диссертационной работе, которая выполнена на актуальную тему, обладает научной новизной, практической ценностью, является самостоятельной и законченной научно-квалификационной исследовательской работой.

Считаю, что диссертационная работа *«Развитие метода магнитно-резонансной визуализации по ядрам ¹³С и ¹⁵N поляризованных параводородом молекул»* соответствует требованиям, предъявляемым к кандидатским диссертациям, в том числе отвечает критериям п.9 Положения о присуждении ученых степеней, утвержденного постановлением Правительства Российской Федерации № 842 от 24 сентября 2013 г. (в действующей редакции), а ее автор, Трепакова Александра Игоревна, заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 1.3.17 — химическая физика, горение и взрыв, физика экстремальных состояний вещества.

Официальный оппонент

Морозов Евгений Владимирович Кандидат физико-математических наук специальность 01.04.07 — физика конденсированного состояния старший научный сотрудник лаборатории молекулярной спектроскопии и анализа

Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии Сибирского отделения Российской академии наук – обособленное подразделение

ФИЦ КНЦ СО РАН (ИХХТ СО РАН)

660036, г. Красноярск, ул. Академгородок, 50/24.

Тел. 8 (391) 249 85 61,

Электронная почта: morozov if@mail.ru

27.10.2023

Согласен на включение моих персональных данных в документы, связанные с работой диссертационного совета, и их дальнейшую обработку.

Подпись Морозова Е. В. заверяю

Ученый секретарь ИХХТСОРАН

K.X.H.

27.10.2023

Eleops

Ю.Н. Зайцева