Исследование горения газов в сосудах с пористой средой.

Горение смеси горючий газ/окислитель в инертных пористых средах имеет специальное название — фильтрационное горение газов или ФГГ. Химическая реакция горения протекает непосредственно в межпоровом пространстве с сильной тепловой связью между волной горения и пористой средой.

Режим горения в пористом слое, то есть его основные параметры и особенности, определяются средним диаметром канала пористой среды.

Можно выделить два режима интересных для техники, один из них – режим низких скоростей (РНС), появляющийся при диаметре канала ниже критического. Под критическим диаметром подразумевается такой диаметр порового канала, ниже которого пламя не в состоянии самостоятельно проникнуть внутрь поры. Стоит отметить, что после прогрева поры до температур равных или выше температуры воспламенения пламя всё же зайдёт в пористую среду. Этот режим достаточно хорошо изучен и на его основе функционируют разнообразные горелки на пористых средах и огнепреградители.

Другой режим горения – режим высоких скоростей (PBC), и он реализуется в закрытом сосуде в присутствии пористой среды с диаметром канала выше критического. Ниже приведена одна из зависимостей, полученная в закрытом сосуде с пористой средой в режиме PBC. Исследовались волны горения в зависимости от степени заполнения пористой средой сосуда.

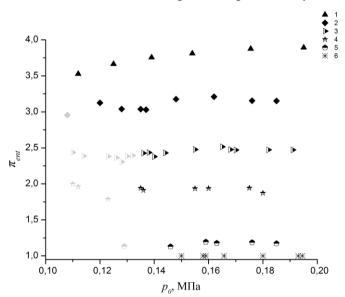


Рис.1. Зависимость π_{ent} в ПС от p_0 ПС – 6 мм стальные шары, пропан+воздух стехиометрия, $1-k_f$ =0.18; $2-k_f$ =0.32; $3-k_f$ =0.46; $4-k_f$ =0.61; $5-k_f$ =0.82; $6-k_f$ =1.

Под π_{ent} подразумевается максимальное относительное давление, достигаемое в сосуде в ходе горения; k_f – степень заполнения сосуда пористой средой; p_0 – начальное давление. Как видно, при заполнении сосуда пористой средой максимальное давление горения уменьшается. При полном заполнении пористой средой сосуда прироста давления за счёт горения практически не наблюдается.

Исследования горения жидких углеводородов в закрытом сосуде.

Одним из интересных исследований, проводимых в настоящий момент, является исследование горения паров жидких углеводородов, в частности нефтей, в смеси с кислородом в закрытом сосуде.

В термостатированный сосуд подаются жидкие углеводороды и кислород. Равновесная концентрация паров топлива в сосуде устанавливается в соответствии с температурой жидкости.

Одной из задач исследования было получить нижние температурные пределы воспламенения паров углеводородов в кислород/азотной смеси. Под нижним пределом воспламенения обычно подразумевается минимальная концентрация топлива в смеси топлива и окислителя, ниже которого горение невозможно.

Эксперименты в такой системе показали сильное расширение нижних пределов горения для паров жидкости в смеси с кислородом по сравнению воздухом.

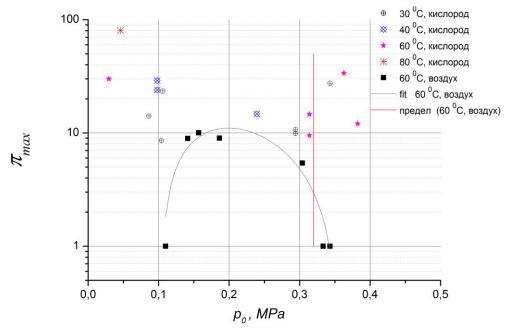


Рис.2. Относительное давление взрыва от начального давления в паро-кислородной и паро-воздушной смеси при разной температуре жидкого топлива.

Рисунок 2 демонстрирует максимальное относительное давление взрыва в сосуде от начально давления *паро-кислородной* смеси. Для сравнения, на рисунке присутствует зависимость максимального давления от начального давления для *паро-воздушной* смеси (черные квадраты) при температуре 60 °C. Красной вертикальной линией показан нижний предел по начальному давлению для этой температуры жидкого топлива. В области нижнего предела воспламенения в *паровоздушной* смеси максимальное давление стремится вниз при незначительном увеличении концентрации воздуха в смеси. Но как видно, это не распространяется на *паро-кислородные* смеси. Стоит отметить, что *паро-воздушные* смеси не горят уже при температурах около 40 °C.

Из теории и практики горения известно: для кислородных и воздушных смесей с углеводородами одного типа нижний предел воспламенения практически совпадает, так как определяется тепловой природой предела горения. Отсутствие предела в *паро-кислородных* пламенах объясняется диффузионным горением жидкости, находящейся в сосуде. Если паровая фаза полностью выгорает, в случае горения вблизи бедного предела, остаётся ещё много окислителя, который может выгорать в диффузионных фронтах паров жидкости, что происходит в случае кислородной смеси. Это и приводит к расширению пределов.