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It was experimentally studied flame propagation (gas explosion) in closed 

vessel containing stoichiometric propane-air mixture and partially filled with a 

porous medium. As the porous media there were used packing of steel balls of 3.2 

and 6 mm in diameters, and also ceramic balls of 6 mm. Experimental dependence 

of maximum pressures during flame propagation on the filling factor of the vessel 

with the porous medium was obtained. There were found theoretical estimates of 

the pressures that satisfactory agree with the experimental data. Estimates that are 

the most close to the experiment data based on the assumptions that gas burns 

adiabatically in the free space and is compressed isothermally in the porous 

medium. The effect of heat losses from the gas into the porous medium and vessel 

walls on the value of the maximum pressure is analyzed. 

Kee words: explosion pressure, closed vessel, porous medium. 

1.1  Introduction 

The possibility of flame propagation in a combustible gas mixture (gas 

explosion) in a porous medium depends on the size of the pores. The porous 

medium is characterized by an average pore size and porosity (a fraction of the free 

volume in relation to the whole volume), ε. There is a critical (quenching) pore 

size. The flame cannot propagate in a porous medium (PM) with a lower pore size. 

The critical size depends on fuel, oxidizer, temperature and pressure [9]. With 

increase in pressure, the critical size decreases [9]. Filling the volume of the vessel 

with a porous medium provides passive explosion protection. If pore sizes is below 

the critical one the flame will not spread, the pressure in the vessel will not exceed 



the initial pressure. However, this method has disadvantages due to the fact that 

filling the porous medium reduces the free volume, and the extended surface of the 

fine pores increases the hydraulic resistance when transporting the gas through the 

vessel. 

If the pore size is above the critical one, the flame propagation in the PM can 

occur in different regimes having their own ranges of velocities and pressures 

evolved in the combustion wave. These regimes are implemented in dependence 

on pore size, initial pressure, temperature and laminar burning velocity of the gas 

mixture. Reviews on these combustion regimes are available in [3,4]. From these 

reviews it follows that explosion safety of the closed volumes can be ensured 

without excluding combustion of the gas. In this case the most suitable combustion 

regime is the regime of flame propagation with the velocities lower 10 m/s. Since 

flame propagation velocity in this regime is substantially lower than sonic one the 

pressure all over the vessel is equal and is changed in time in according with the 

mass fraction of the burnt gas. In the high porosity medium (ε≈0.98), the pressure 

increases during the flame propagation. The maximum pressure depends on the 

heat release of the gas and the volumetric heat capacity of the PM. In the low 

porosity medium, for example, in irregular packing with balls (ε≈0.4), the pressure 

does not increase, but decreases during the flame propagation [10]. It seems 

promising, in some cases, the use of porous media with a pore size greater than 

critical, but with partial filling of the vessel with a porous medium. This allows one 

to increase part of free volume. 

The aim of this work is to obtain an experimental and theoretical dependence of 

the maximum pressure in the vessel on the filling factor of the vessel with a porous 

medium. Knowing the limits of the strength of the vessel, one can always find such 

filling factor that the maximum pressure does not exceed a given value.  

1.2 Experimental 

Experimental vessel is the same as in [7, 8, 10, 11]. It is vertical tube. In 

upper part of the tube was free space and lower part contained PM. The tube was 

quadratic cross section 48x48 mm2 and 1.68 m in length with regular windows. 



Distance between the windows is 12 cm. At each of the windows there were 

photodiodes. Such length of the tube allows being steady-state of flame 

propagation in porous medium in the case when filling factor k=l/L was 

sufficiently high. Here L is length of the tube and l is length of that part that filled 

with porous medium (Fig. 1). Maximum pressure reached at flame propagation 

depends on this filling factor. Filling factor is varied from 0 to 1. In the most 

experiments the porous medium represents filling with steel balls of diameter of 

d=6 mm. The tube was filled with balls up to the required window. This window is 

just over the PM at the distance of 5-10 mm in free space. The porosity ε of a 

porous medium of identical balls of irregular packing is about 0.4 and it does not 

depend on the diameter of the ball. This porosity was in our experiments. 
Fig. 1. Set up. 1 - tube , 2 – windows with photodiodes, 3 – pressure sensor, 4 – ignition 

electrodes, volume with a porous medium is shaded. 
As the combustible gas mixture (unburnt gas) we used 

the mixture of 4% in volume of propane with air (purity of 

propane 99.99%). Accuracy of mixture preparation is 0.1%. 

Experiments carried out in the following manner. The 

tube was filled up to definite height with balls of the same 

diameter. Then it was vacuumized and filled with unburnt gas 

prepared in advance in the high pressure mixer. The range of 

initial pressures in the tube was 0.08 – 0.43 MPa. After electric 

spark ignition near upper end of the tube there were registered 

pressure and photodiodes signals. Photodiodes signals allow 

determining propagation velocity of the flame and the pressure 

at the moment when flame has approached to the PM. Average velocity was 

defined as distance between the windows with photodiodes divided into time 

between maximum of signals from these photodiodes.  

1.3 Results 

For estimate of heat loss from free space into the tube walls and 

characteristic time of flame propagation that are dependent on initial pressure there 

4 

1 

2 

3 



were carried out experiments in the tube without PM for initial pressures in the 

range of 0.1 – 0.2 MPa. 

After ignition, the flame propagates with acceleration. Then it slows down, 

the flame speed tends to a constant value. The flame propagation was accompanied 

by a continuous increase in pressure in the vessel. The average flame propagation 

velocity is 6-7 m/s, the maximum velocities at the beginning of propagation 

immediately after ignition are 12-18 m/s, the velocity at the end of propagation is 

4-5 m/s. It should be noted that as the initial pressure increases, a small increase in 

the average flame velocity occurs. The value of the relative end pressure πe=pe/p0, 

where pe pressure at the end of combustion (which is the maximum at propagation 

in the vessel without PM) varied from 3 at initial pressure p0=0.1 MPa to 4.6 at p0= 

0.2 MPa. This pressures are lower than calculated adiabatic relative end pressure 

πa=9.5 and 9.6 for p0=0.1 and 0.2 MPa correspondingly. It means that conditions 

are non-adiabatic. Increase in πe with increase in initial pressure points to 

decreasing heat loss during flame propagation at increase in initial pressure.  

Typical dependences of relative current pressure π=p/p0 on time in the tube 

partially filled with PM for different k 

and p0 are presented in Fig. 2. 
 

Fig. 2. Dependences of relative current 

pressures on time. 1 – k=0.25, p0=0.195 MPa; 

2 – k=0.32, p0=0.175 MPa; 3 – k=0.61, p0= 

0.175 MPa; marks t1 - t3 point to the moment 

of flame approach to PM and the value of 

relative pressure π; e1, e2– the moments of 

flame propagation end (for curve 3, e3 is out 

of the presented time interval). 

Flame propagation begins in free space and flame propagates approximately 

the same manner as in the tube without PM. At the moment of flame approach to 

PM that is marked t1 (t2, t3) in Fig. 2 the combustion wave in porous medium 

begins to form. At that there is small pressure rise occurs and pressure reaches its 
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maximum. After combustion wave formation in the porous medium it propagates 

with smooth decreasing of pressure.  

Shortly, for comparison, describe flame propagation in the tube completely 

filled with PM (k=1) as in [7, 8, 10, 11]. In this case after combustion wave 

formation the flame also propagates with decreasing of pressure but with small 

characteristic fluctuations of pressure. Cooling of burnt gas to temperatures below 

the dew point and condensation of water from the burnt gas result in pressure 

decrease. At the moment of approach to the end of the tube there begins short-term 

sharp pressure drop and then pressure decrease ceases [11]. This sharp pressure 

drop is due to disappearing of the combustion wave and fast cooling of burnt gas 

[10]. Since earlier burnt gas has already the temperature close to temperature of the 

porous medium further pressure drop ceases due to absence of heat loss.  

In the tube partially filled with PM unlike the case k=1 there is no 

characteristic pressure fluctuations after formation of combustion wave and there is 

no noticeable pressure drop at the moment of combustion wave approach to the 

end of the tube. Pressure decreases smoothly. The pressure decrease is due not only 

to the cooling of gas by tube walls and surface of the porous medium and also the 

condensation of water from burnt gas, but mainly by tube walls. The pressure drop 

from the maximum by the end of combustion is greater than would be due to the 

condensation of water. With increase in initial pressure the rate of pressure drop 

decreases. The end of combustion is almost unnoticeable on pressure record and it 

can be fixed only by the signals of photo diodes. 

It should be noted that the process of flame penetration into a porous 

medium or the formation of a combustion wave can occur with a sudden increase 

in the rate of pressure increase and pressure fluctuations (curves 1, 2 in fig. 2), and 

with smooth increase in pressure and without fluctuations (curve 3, fig. 2). It is 

seen that growth of pressure due to formation of the combustion wave is small 

comparatively to pressure gain at flame approach to PM.  



Fig. 3 demonstrates influence of the filling factor k on the value of maximum 

pressure. Maximum pressure πm is presented in relative values pm/p0. This allows 

us to generalize data obtained under different initial pressures. Ranges of pressures 

were 0.08 – 0.2 MPa for balls of 6 mm and 0.1 – 0.43 MPa for balls of 3.2 mm 

diameter.  
Fig. 3. Dependence of maximum 

pressure on k. 1, 2 – steel balls of 6 mm 

(L=1.68 m – 1; L=1.89 m - 2); 3 – ceramic 

ball of 6 mm; 4 – steel balls of 3.2 mm; 5-7 

– theoretical estimates. 

The main number of the 

experiments were carried out in the 

tube of L=1.68 m of length. It is seen 

that material and diameter of the balls 

does not influence on the value of maximum relative pressure. Increase in the tube 

length decreases a little the maximum pressure. 

In the case when velocity of acoustic compression wave is much more than 

flame propagation velocity the pressure will be approximately identical all over the 

vessel. To be convinced that this condition is implemented there are compared 

maximum pressures obtained under equal initial pressures and filling factors for 

balls of 3.2 mm and 6 mm of diameters. Experiments showed that maximum 

pressures at the same filling factor for these balls are approximately equal. It is 

worth noting that for balls with a diameter of 3.2 mm, the pressure at the moment 

of flame approach to PM is also the maximum, since the flame does not propagate 

further (is quenched) 

1.4 Discussion 

After ignition at the top end of the tube flame begins to propagate from top to 

down towards PM. Pressure increases and the unburnt gas which is in front of the 

flame moves from free space into PM. Let's estimate pressure which is reached at 

the moment when the flame has approached to PM. For this purpose we will make 

the following assumptions. Flame propagation in the free part of the tube occurs 
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adiabatically, i.e. we do not consider heat exchange of burnt gas and unburnt gas 

with walls. But further we consider two variants of assumptions. The first 

assumption is that gas in PM compresses also adiabatically, without heat exchange 

with the porous medium. The second assumption is the following. Unburnt gas 

penetrating PM takes initial temperature T0 and further during pressure rise it is 

compressed isothermally. Other assumptions are the same as in classical 

formulations, it is accepted that gas is ideal, thermal capacities do not depend on 

temperature [1, 12], pressure of gas is identical overall the vessel.  

Note that even if the process of compression of unburnt gas is quasi-

equilibrium, the temperature of the unburnt mixture and PM can increases if the 

heat capacity of the solid phase per unit of the gas phase is small. But in our case 

this relative heat capacity is not small but very large and is about 103. Therefore 

whether temperature in our case will increase depends only on rate of the 

compression process.  

Temperature measurements outside the PM in the fresh mixture showed that 

despite the heat loss into the vessel walls the compression of the fresh mixture 

occurs in the process close to adiabatic one. Gas compression in the PM occurs in 

the process close to isothermal. Figure 4 shows the dependences of the gas 

temperature in the PM, the current relative pressure π=p/p0 and dπ/dt as a function 

of time during flame propagation. The initial gas pressure p0=0.11 MPa. The PM 

occupied a height of 0.21 m in the lower part of the tube and the thermocouple was 

placed in the pore at a depth of 

0.12 m from the boundary with 

free space. 

Fig. 4. Dependences of 

pressure (1), gas temperature 

increase in PM (2), and pressure 

derivative dπ/dt (3) on time.  

It is seen that at the first 

moment the gas is heated to 
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○C and then the temperature remains almost constant. When the flame enters 

into the PM at 0.12 m, the pressure drop begins when the flame propagates further 

in the PM (Fig. 4, t>190 ms). It can be seen that both the temperature rise level and 

the temperature correlation with dπ/dt dt indicate the dependence of the gas 

temperature in the PM on the rate of change of pressure.  

Theoretical estimates, assuming a constant rate of pressure growth, show that 

gas compression in the free space occurs almost adiabatically. In the porous 

medium, the gas temperature first becomes slightly above the temperature of the 

porous medium, and then the temperature tends to an asymptotic value, which 

depends on the PM specific surface, the pressure growth rate and its initial value. 

Thus, the temperature of the unburned gas in the PM can be considered equal to T0. 

 

1.4.1 Pressure estimates at the moment of flame approach to PM. Adiabatic case. 

The first estimate is based on the assumption that the gas burns only in free space 

and it is compressed in PM adiabatically. The internal energy of gas initially is 
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where V – vessel volume. After flame approach to PM it is  
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where px – unknown pressure at the moment of flame approach to PM, ε – 

porosity, γ - the ratio of specific heats at constant pressure and constant volume, 

subscripts u and b attribute to unburnt and burnt gas correspondingly. 

Change of an internal energy is:  
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In the first estimate this change is caused by heat release (hr) mbQhr wherе Qhr 

is heat release of chemical reaction per mass unit of unburnt gas, and mb –is mass 

of burnt gas. The mass of the burnt gas is equal to a difference between the mass of 

entire gas m0 and mass of the unburnt gas mu. Where mu is the mass of unburnt gas 

that penetrated into the porous medium by the time of flame approach to PM:  



 
RT

Vkp
kk

RT
Vp

mmm xuu
ub





 1

0

0
0 .                                      (2) 

Hereinafter µu and µb are molecular masses of unburnt and burnt gas 

correspondingly. As according to the assumption of the first estimate unburnt gas 

was compressed adiabatically therefore its temperature in a porous medium will be 
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 , where pxa is the unknown pressure in the case of adiabatic 

compression in PM. Substituting this expression for temperature in (2) we find mba. 

Where mba is mass of the burnt gas before the flame approaches to the PM in the 

case of adiabatic combustion. 

Qhr can be expressed through heat capacities of the gas and pressure of 

adiabatic combustion in the closed vessel [13]: 
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Since work on the entire gas was not carried out, the change in internal energy is 

equal to the heat supplied  

hrbaQmU  1                                                (3) 
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Substituting the expressions for Qhr and mba in (3) after transformations, we have: 
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Solving the equation (4) relatively πxa for various values of k we obtain dependence 

πxa(k) for the case of adiabatic combustion. This dependence is presented in fig. 3 

with curve 5.  

1.4.2 Pressure estimates. Isothermal case. 

The second estimate will be made in the assumptions that the unburnt and 

burnt gases in free space compress adiabatically. But when unburnt gas penetrates 



into the porous medium it is instantly cooled to initial temperature and then it 

compressed isothermally. 

For the second estimate in the right hand of the equation (6) to calculate heat 

supplied it is necessary to consider heat loss due to work of isothermal 

compression of unburnt gas and also heat loss in the porous medium from the 

unburnt gas heated owing to adiabatic compression in the free space. Heat loss of 

Qw due to work (w) of an isothermal compression (ic):  
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where pxic is unknown pressure, and muic is the mass of unburnt gas penetrated in 

the PM by the time the flame approaches to the PM in the case of isothermal 

compression of unburnt gas in the PM.  

Now let’s estimate heat loss hlQ  at penetration of mass dm with temperature 

T into the porous medium. It will be: 
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at that pressure in the vessel will increase by dm
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equation (6) temperature and mass through the current pressure and its increase dp, 

(6) takes the form: 
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Integrating (7) in the range from π=1 to π=πxic we obtain heat loss from unburnt 

heated gas that penetrates into PM: 
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Taking into account these heat losses change of an internal energy of gas takes a 

form: 

hlwhrbic QQQmU  2 ,                                       (9) 



where mbic has already less value than at the adiabatic process as unburnt gas 

compressed isothermally and it penetrates more into PM, than at adiabatic 

compression. To find mbic we substitute T=T0 in the equation (2). 

   



 kkk

RT
Vp

RT
Vkpkk

RT
Vpmmm xic

uxicuu
uicbic  11

0

0

00

0
0 . 

Substituting in (9) expressions for mbic, Qhr, Qw, Qhl after transformation we obtain: 
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Solving this equation relatively πxic for various values of k we obtain unknown 

dependence of πxic(k) for the case of an isothermal compression of the unburnt gas. 

This dependence is presented in fig. 3 with curve 6. 

In fig. 3 along with experimental data presented as symbols there are three 

theoretical curves. From fig. 3 it is seen that influence of the porous medium on 

maximum pressure is not reduced only to the fact that some part of unburnt gas has 

not burnt (curve 5). Experimental symbols lie lower this curve. The curve (6), 

which takes into account the cooling of the unburnt gas in PM, is much better 

corresponds the experiments. 

Let’s consider what reasons are and how they affect the pressure decrease in 

comparison with the adiabatic compression of unburnt gas in the PM. Above we 

have named two reasons. These are the work of the isothermal compression Qw and 

the heat loss from unburnt gas heated due to adiabatic compression in the PM 

immediately upon penetration into the PM, Qhl. The third reason is implicitly taken 

into account in (9) in the form of a smaller mass of the gas burnt in free space. That 

is, the heat supplied to the system and, accordingly, ΔU in this case will be lower 

by the value of Qug, due to less mass of the burnt gas. In other words there is larger 

mass of unburnt gas will be in PM at the moment when flame approaches to the 

PM in the case of an isothermal compression comparatively with the case of an 

adiabatic compression in PM. Let's calculate this ΔU 
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After transformations we obtain: 
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Thus, decrease in the maximum pressure in the closed vessel partially filled 

with a porous medium is caused by three reasons. Work of an isothermal 

compression of unburnt gas (Qw), heat loss from heated unburnt gas into porous 

medium (Qhl) and less amount of the reacted gas at the moment of flame approach 

to the porous medium. The last leads to decrease in an internal energy of entire gas 

on the value of Qug.  

Let’s estimate on which value of Δπ the maximum pressure decreases due to 

the action of each reason. Let’s write down the difference between the internal 

energies of the gas in adiabatic combustion Ua and in combustion, taking into 

account the cooling of unburnt gas in PM, Uic: 
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This difference is due to the influence of the above three factors 

ughlwica QQQUU  .                                (13) 

Substituting the corresponding expressions from (12), (5), (8), (11) into (13), after 

transformations we obtain: 
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Here, the first term on the right-hand side w   is responsible for the pressure 

decrease due to isothermal compression, the second term hl  for the decrease due 

to cooling of unburnt gas, the third term ug  for the pressure decrease due to the 

lesser mass of the burnt gas. 

From the analysis of equation (14), it is found that the heat losses from fresh 

gas due to its cooling by a porous medium and the work of isothermal compression 

have little effect on the pressure decrease. The main factor that influences pressure 

reduction is a smaller amount of unburnt gas that burns in free space. 

1.4.3 Pressure estimates. Simple expression. 

Consider equation (10) without taking heat losses Qw, Qhl into account, since 

they are small. Equation (10) takes the simple form: 
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1
1                                       (15). 

The calculated dependence of πx(k) by the equation (15) is shown in Fig. 3 curve 

(7). It is seen that the curves (6) and (7) are close. This again indicates that the 

contributions to the pressure decrease due to heat losses from unburnt gas and the 

work of adiabatic compression have little effect on the pressure estimate. For fast 

practical estimates it is convenient to use equation (15). 

The increase in heat loss from unburnt gas leads to a decrease in pressure 

due to the possibility of containing more unburnt gas in the PM. And how will the 

heat loss from the burnt gas in the free space affect the maximum pressure? On the 

one hand, it is obvious that this should lead to a decrease in the gas pressure, and 

on the other hand, this will lead to the fact that a smaller amount of unburnt gas 

will be in the porous medium by the moment of flame approach to PM. That is 

unburnt gas will burn more, this should lead to an increase in pressure. The 

calculation shows that for k> 0.23, not penetration of some unburnt gas in the PM, 

and its combustion in free space, lead to the fact that the pressure decrease due to 

heat loss from the burnt gas in free space will be lower than in the absence of the 

porous medium. It is seen from fig. 3 that with the filling factors k> 0.5, the heat 



losses from the combustion products do not greatly reduce the maximum pressure 

of the relative to the theoretical one (curve 6). 

Analysis of equations (10), (15) shows that the use of high porosity media 

even more effectively reduces the maximum pressure for a given k. 

 1.5 Conclusions  

The dependence of the maximum pressure in the vessel on the filling factor of 

the porous medium is experimentally obtained. It is shown that the pressure does 

not depend on the material and characteristic size of the porous medium element. 

An analytical estimate of this dependence is given, which agrees satisfactorily 

with experiment at filling factors above 0.4. 

The influence of heat losses from unburnt and burnt gas in the porous medium 

and vessel walls on the value of the maximum pressure is analyzed. 

Acknowledgements 

This work was supported by the Russian Foundation for Basic Research 

(Grant No. 13-08-00480) 

Literature 

1. Lewis B., Elbe G., Combustion, Flames and Explosions of Gases. Academic press. 

1987. 731 p. 

2. Babkin V.S., Kononenko Yu.G., Analysis of equations for determining the normal 

burning velocity by the constant-volume-bomb method , Combust., Expl., Shock 

Waves 5 (1969)  60-64. 

3. V.S.Babkin, Filtrational combustion of gases. Present state of affairs and prospects, 

Pure Appl. Chem. 65 (1993)  335-344. 

4. Pinaev A.V., Lyamin G.A., Fundamental laws governing subsonic and detonating 

gas combustion in inert porous media, Combust., Expl., Shock Waves 25 (1989)  

448-458. 

5. Babkin V.S., Bunev V.A., Korzhavin A.A., Gas combustion in a vessel with a 

highly porous inert medium , Combust., Expl., Shock Waves 21 (1985)  519-523. 

6. Gelfand B.E., Medvedev S.P., Polenov A.I., Timofeev E.N., Frolov S.M., 

Tsyganov S.A., Measurement of the velocity of weak disturbances of bulk density 



in porous media, Journal of Applied Mechanics and Technical Physics 27 (1986) 

127-130.  

7. KorzhavinA.A., BunevV.A., BabkinV.S., Dynamics of gas combustion in closed 

systems with an inert porous medium. Combust. Flame 109 (1997)  507-520. 

8. Korzhavin A.A., Bunev V.A., Babkin V.S., Unsteady-state effects upon gas 

combustion in closed vessels with an inert porous medium , Combust., Expl., 

Shock Waves 33 (1997) 19-25. 

9. V.S. Babkin, The Problems of Porous Flame-Arresters, In: Prevention of 

Hazardous Fires and Explosions, V.E. Zarko et al., (Ed.), Kluwer Academic 

Publishers, Printed in Netherlands (1999) 199-213 

10. Korzhavin A.A., Bunev V.A., Abdullin R.Kh., Babkin V.S., Flame zone in gas 

combustion in an inert porous medium , Combust., Expl., Shock Waves 18 (1982)  

628-631. 

11. Babkin V.S., Korzhavin A.A., Bunev V.A., Propagation of premixed explosion 

flames in porous media, Combust.Flame 87 (1991) 182-190. 

12. Zeldovich Ya B, Barenblatt G I, Librovich V B, Makhviladze G M, 

The mathematical theory of combustion and explosions, Plenum Press, New York, 

1985.  

13. Babkin V.S., Kononenko Yu.G., Equations for determining normal flame velocity 

in a constant-volume spherical bomb, Combust., Expl., Shock Waves 3 (1967)  

168-171. 


