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Abstract. The calculation of the occupied and empty volume in an ensemble of 
overlapping spheres is not a simple task in general. There are different analyti-
cal and numerical methods, which have been developed for the treatment of 
specific problems, for example the calculation of local intermolecular voids or ‒ 
vice versa ‒ of the volume of overlapping atoms. A very efficient approach to 
solve these problems is based on the Voronoi-Delaunay subsimplexes, which 
are special triangular pyramids defined at the intersection of a Voronoi polyhe-
dron and Delaunay simplex. The subsimplexes were proposed in a paper [1] 
(Sastry S.et al., Phys. Rev. E, vol.56, 5524–5532, 1997) for the calculation of 
the cavity volume in simple liquids. Later, the subsimplexes were applied for 
the treatment of the union of strongly overlapping spheres [2] (Voloshin V.P. et 
al., Proc. of the 8th ISVD, 170–176, 2011). In this article we discuss wider ap-
plications of subsimplexes for the calculation of the occupied and empty vol-
umes of different structural units, selected in molecular systems. In particular, 
we apply them to Voronoi and Delaunay shells, defined around a solute, as well 
as their intersection. It opens a way to calculate the components of the partial 
molar volume of a macromolecule in solution, what is important for the inter-
pretation of experimental volumetric data for protein solutions. The method is 
illustrated by the application to molecular dynamics models of a hIAPP poly-
peptide molecule in water at different temperatures. 
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1 Introduction 

Ensembles of overlapping spheres are used as models for many real systems. In 
chemistry and biology the atoms are represented as van der Waals spheres, which are 
overlapping because of relatively short chemical bonds between them. In materials 



sciences packings of conglomerate particles are occurring in sandstones and colloids. 
The problem of calculating the volume of a molecule was stated many years ago 
[3,4]. The local packing fraction is studied in the investigation of metal glasses [5]. A 
complementary task is to find the volume of intermolecular voids, which is important 
both for understanding protein structures and membrane permeability [6-8]. The vol-
ume of interatomic cavities is of interest in the theory of liquids [1] and for porous 
materials [9,10]. In recent years, there is a growing interest in the calculation of the 
volumetric characteristics of solutions. The density of water in the hydration shell, the 
density of the solute molecule, and the occurrence of additional voids in the boundary 
layer affect the partial molar volume (apparent volume) of a solute molecule in solu-
tion. The calculation of these components helps to interpret the data of volumetric 
measurements [11-15].  

Many different methods are known to calculate the occupied and empty volumes in 
a system of spherical particles. Some of them use analytically derived formulas for 
the calculation of multiply intersecting spheres explicitly, or use numerical algorithms 
like Monte Carlo methods, see the papers cited in Refs. [2] and [16].  

A novel approach was proposed in Ref. [1] and was applied to the calculation of 
the volume of interatomic cavities in a monatomic liquid. It substantially uses the 
Voronoi-Delaunay tessellation of the system. In this case a void between the atoms is 
composed of the empty volume of Delaunay simplexes. It was proposed to divide a 
simplex into smaller elements ‒ orthogonal triangular pyramids (subsimplexes).  The 
subsimplex has very important property: its occupied volume is defined by the only 
atom at the apex of the subsimplex.  Thus, for any system of overlapping atoms, ex-
plicit formulas for the occupied volume of the subsimplex can be written. Then it was 
remained to sum (using a “rule of signs") the empty volumes of the subsimplexes 
which constitute the Delaunay simplexes of the cavity. (Note that the empty volume is 
obviously the difference between the total and the occupied volume). The authors of 
Ref. [1] used classical Voronoi-Delaunay tessellation, because atoms in their system 
have the same radius. However, they also emphasized that this approach can be im-
plemented for spheres of various radii. In particular, the power (radical) decomposi-
tion can be used; but instead of the classical Delaunay simplexes, in this case the dual 
simplexes of the power Voronoi tessellation should be used. 

In Ref. [2] the method of subsimplexes was implemented for the calculation of the 
volume of a union of overlapping spheres. This problem can be reduced to the deter-
mination of the occupied volume of the power Voronoi polyhedra in a system of over-
lapping spheres of different radii. Summing up the occupied volume of all subsim-
plexes, associated with a given atom, we find the desired occupied volume of the 
Voronoi polyhedron of this atom. (Here and below we use the terms Voronoi polyhe-
dron (VP) and Delaunay simplex (DS) for both classical and power tessellations).  In 
Ref. [2] we compared the method of subsimplexes with the other analytical method, 
which are known for the calculation of volume of a union of overlapping spheres. It 
was shown it is robust  and even a bit faster then “a certified algorithm” [16]. 

In this paper, we propose to use subsimplexes for the calculation of occupied and 
empty volumes of various constructions of VP and DS. These may be the Voronoi 
region of a solute molecule in solution [17], or the Voronoi or Delaunay shells, given 
by the decomposition of a solution with respect to the solute molecule [15, 18]. 
Moreover, subsimplexes can help to estimate the intersection of Voronoi and Delau-



nay shells [19]. It helps to calculate the components of the partial molar volume of a 
macromolecule in solution, what is important for the interpretation of experimental 
volumetric data for protein solutions. We do not know other analytical approaches for 
such kind of constructions. Numerical methods (like Monte Carlo) are very slow for 
the studied problems. Our method is illustrated by the application to molecular dy-
namics models of a hIAPP polypeptide molecule in water at different temperatures. 

2 Voronoi-Delaunay subsimplex  

2.1 Two dimensions 

Consider an atom A with its Voronoi polygon (VP) and the Delaunay simplex (DS) 
which corresponds to a vertex V of this polygon, Fig. 1. Join the points A and V by a 
line segment and draw perpendiculars from the point A to those polygon edges, which 
meet at the vertex V. For 2D there are only two such polygon edges. Let us denote the 
base points of the perpendiculars at these edges as E1 and E2. (Note, these perpen-
diculars coincide with DS edges.) The triangles AVE1 and AVE2 are the Voronoi-
Delaunay subsimplexes (or simple subsimplexes) which correspond to the pair A - V. 
We will call them the duo of subsimplexes related to the pair A - V. 

 

Fig. 1. 2D Voronoi-Delaunay sub-
simplexes for the Voronoi polyhe-
dron of an atom A and the Delaunay 
simplex of its vertex V. Points E1 and 
E2 are the bases of the perpendiculars 
from the point A to the edges which 
meet at vertex V. 

The example shown in Fig. 1 is typical for a more or less homogeneous system. In 
this case, the duo of subsimplexs represents the intersection of a VP and a DS. But 
such an ordinary configuration does not exhaust all situations in physical models. Fig. 
2 shows an example, where one of the points E lies outside the VP. In this case the 
subsimplex AVE2 of the pair A-V lies outside the Delaunay simplex of the vertex V 
(Fig. 2a). A piece of this subsimplex is also outside of the Voronoi polyhedron of the 
atom A.  

Such a duo does not represent the intersection of the VP and the DS. However, if 
we consider two adjacent Delaunay simplexes together (of vertices V and V', Fig. 2b) 
we can find the correct volume of intersection of both simplexes and the polygon. In 
this case (Fig. 2c), by changing the sign of the exterior (inverted) subsimplex AVE2, it 
can be compensated by the subsimplex AV'E1' (note, the points E2 and E1' are identi-
cal).  



In Ref. [1] it was proposed to mark the volume of subsimplexes with different 
signs. In this example a sign factor SE is defined, which is determined by the position 
of point E and the corresponding polygon edge relative to the vertex V. Point E2 in 
Fig.2a is on the negative side of an axis (arrow 2), emanating from point V along the 
edge VV'. In other words, it lies on the other side of the point V than the edge of the 
polygon). In this case, for the subsimplex AVE2 the factor is negative, SE = –1. Else, if 
the point E lies on the edge (as in Fig. 1) or on its continuation, but on the positive 
side of the axis, emanating from the vertex, as in the case of point E'1 and vertex V' in 
Fig. 2b) the factor is positive, SE = +1. 

  

 

Fig. 2. Voronoi-Delaunay subsimplexes in the case 
of a non-ordinary configuration. (a) Vertex V, 
arrows 1 and 2 indicate the polygon edges, which 
are emanating from V. The point E2 lies on the 
negative side of arrow 2 (opposite to the polygon 
edge emanating from vertex V). In this case the 
exterior subsimplex AVE2 is considered negative, 
while the interior subsimplex AVE1 is positiv. (b) 
Vertex V', arrows 1' and 2'. The point E1' is outside 
the Voronoi edges, but in positive direction of the 
arrow (on the same side as edge 1' with respect to 
vertex V'). In this case, the subsimplex AV'E1' is 
considered positive. (c) The sum of the (signed) 
subsimplexes at the vertices V and V' gives the 
intersection of these Delaunay simplexes and the 
Voronoi polygon. 

The symbols "plus" and "minus" in Fig. 2a,b show the signs related with the con-
sidered subsimplexes. After summing, we will have an area corresponding to the in-
tersection of the simplexes V and V' with the polygon A (Fig. 2c). 

Recall that when dealing with power Voronoi decomposition, there may be cases 
when the center of atom A is outside its VP. This occurs when the position of atom A 
lies deep within the sphere characterizing another atom [20,21], see Fig. 2 in Ref. [2]. 
In this case point A lies on the other side of a VP face with respect to the VP itself. 
For all subsimplexes, which are based on this face, an additional factor SA = –1 is 
defined. In all other cases, SA = +1, see Fig. 6 in Ref. [2]. The final sign of the sub-
simplex in 2D is determined by the product of factors SE and SA . 

c) 

b) a) 



2.2 Three dimensions 

Consider the VP of an atom A and the DS of its vertex V, Fig. 3. Three edges of 
the VP are incident to the vertex (let us denote them as 1, 2, 3), and there are three 
faces of the VP, which intersect at these edges (let us call them as (1,2), (1,3) and 
(2,3)). Connect the points A and V by a line segment, and draw perpendiculars from 
point A to these VP planes (as in 2D, the perpendiculars coincide with DS-edges). 
The points of intersection of the perpendiculars with the planes are denoted B12, B13, 
B23. 

 

Fig. 3. Three-dimensional Voronoi-
Delaunay subsimplexes. Point V is a 
vertex of the VP of atom A. Points 
B12, B13 and B23 are the bases of the 
perpendiculars from A to the Voronoi 
faces, which meet in V. Points E1, E2 
and E3 are the bases of the perpen-
diculars from the points B12, B13, B23 
to the VP edges 1, 2 and 3. The trian-
gles (BVE) are the bases of subsim-
plexes with the vertex A. Six subsim-
plexes (sextet) are associated with 
each pair A - V. 

 

In each of these planes we have a situation which is similar to the one discussed for 
2D, where the point B (which is B12, B13 or B23) now plays the role of point A in Figs. 
1, 2. Draw perpendiculars from the points B to the edges of their planes, Fig.3. Thes 
edges are the VP edges 1, 2, 3. The points of intersection of the perpendiculars with 
the polyherdon edges (or their continuations) are denoted also as E1, E2, E3. Thus, on 
each face of the VP we got two right triangles. For example on the plane (1,2) these 
are B12VE1 and B12VE2. We will consider these triangles as the bases of pyramids 
with the vertex A as top. These pyramids form the Voronoi- Delaunay subsimplexes 
in 3D. 

 

Fig. 4. 3D Voronoi-Delaunay sub-
simplex of the Voronoi polyhedron 
of an atom A and the Delaunay 
simplex of a vertex V of this poly-
hedron. Point B is the base of the 
perpendicular from vertex A to the 
face of the polyhedron. Point E is 
the base of the perpendicular from 
the point B to the VP edge, starting 
from vertex V. The region covered 
by atom A defines the occupied 
volume of the subsimplex. 



The subsimplexes have a simple shape (Fig. 4), which made it possible to write an 
explicit expression for the calculation of the occupied volume inside subsimplexes. 
As discussed in Refs. [1, 2], this volume is completely determined by the atom cen-
tered on the vertex A. Some other atom can also overlap with the subsimplex (par-
tially or fully), but this overlapping volume is always covered by atom A. This fol-
lows from the fact that the subsimplex is part of the Voronoi polyhedron of atom A. 
This means that any volume of the subsimplex, which is uncovered by atom A, can 
not be covered by any other atom of the system. 

The formulas for the calculation of the occupied volume and the area of the spheri-
cal surface section were first given in Ref. [1]. They are mathematically identical to 
formulas proposed in Ref. [2], which are represented there in a shorter way. Note, as 
it was found in our calculations, formula (A8) for the area of the spherical surface 
section in the pyramid, presented in Ref.[1], is not robust. It is unstable if the subsim-
plex edge VE tends to zero and at the singular point, where the value of the sphere 
radius rC tends to the length of the edge AE. A robust version of this formula is given 
in Ref. [2]. 

Here we present the formulas for the occupied volume of the subsimplex, keeping 
all notations used in Refs.[1,2]. Remember, the subsimplex has one right dihedral 
angle (between faces ABE and BEV), and therefore right angles between segments 
AB and BE, and AB and BV, additionally there are right angles between BE and EV, 
and between AE and EV.  

The lengths of the orthogonal edges of the pyramid are x0, y0, z0 , Fig. 4. Thus the 
length AE is equal to 2

0
2
0 yxrE   and the length AV is 2

0
2
0

2
0 zyxrV  . The 

occupied volume depends on which edges of the pyramid are intersected by the sur-
face of the sphere with radius rC. Thus the following cases are possible:  
 
I: rC≤x0 
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IV: rC≥rV 
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where the following notations are used:   ECEC ryryrxrxyz 020200 ,,arctan  , 
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Two subsimplexes are based on each VP face at vertex V. Each vertex V is com-

mon to three faces, so it unites six subsimplexes. Typically, point B lies on a face of 
the VP, and point E is located on a VP edge. For such ordinary configurations the 
subsimplexes represent the intersection of the VP of A and the DS of its vertex V, 
Fig.3. In this case these six subsimplexes are combined into a hexahedron with eight 
corners, which is isomorphic to a cube, and the line segment AV is its spatial diago-
nal. However, in general they do not form a convex polyhedron, because the inverted 
subsimplexes, discussed in the 2D section, exist also in 3D. Nevertheless, it is con-
venient to combine the subsimplexes into a group (sextet) which is affiliated with the 
pair A - V.  

The rule of sign for the summation of three-dimensional subsimplexes was dis-
cussed in Refs. [1, 2]. The sign of a subsimplex is determined by the product of three 
factors: SA∙SE∙SB. Here a factor SB is appended to the mentioned factors SA and SE for 
2D. It reflects the relative positions of point B and the face of the VP, Fig.5. 

If point B and the VP face lie on the same side of the edge with the base point E, 
then the factor SB for the subsimplex with the base BVE is positive. (For example, in 
Fig.5a and Fig.5c the factor SB for the subsimplex with the base BVE1 is positive.). 
Otherwise, SB is negative, Fig.5b and Fig.5d. Similarly, for the subsimplex with the 
base BVE2, the sing is positive in Fig. 5a and Fig.5 b and negative in Fig. 5c and 
Fig.5 d.  

Thus the determination of the subsimplex sign is straightforward: we need to estab-
lish the relative position of points on a line (to find the factor SE), points in a plane 
relatively to a line (for SB), and points in space relatively to a plane (for SA), which can 
be easily done by elementary analytic geometry. 

Note that inverted subsimplexes occur, when the Voronoi vertex V (i.e. the “cen-
ter" of the DS) is outside its Delaunay simplex. Such a DS is called open Delaunay 
simplex and the corresponding face open face. A Delaunay simplex can contain one or 
two open faces. They usually occur at relatively wide cavities inside atomic systems. 
If the center is inside, then the Delaunay simplex is called closed, and a simplex face 
which does not separate the body of the simplex and its center is also closed. An open 
face is always adjacent to a closed face of the adjacent simplex [22]. Thus the 
neighboring simplexes compensate the inverted subsimplexes, see Fig.2. We will call 
them the compensating Delaunay simplexes. 

It is interesting to note that all vertices of the sextet lie on the same circumsphere 
regardless of whether it forms a convex polyhedron or not. This is evident from the 
fact that the angles at all vertices B and E are right angles and based on the common 
diagonal AV (Thales’ theorem). 

 



 
 

 

 
Fig.5. Choosing the sing of the factor SB for the calculation of the 3D Voronoi-Delaunay sub-
simplexes. Possible positions of point B relatively a polyhedron face are shown. Symbols (+) 
and (-) show the sign of SB for the subsimplexes with the bases BVE1 and BVE2. 

 
Recall that the perpendiculars from point A to the faces of the VP (segments ABik) 

coincide with the edges of the DS. Thus our subsimplexes correspond completely to 
the subsimplexes defined in Ref. [1]. These authors started from a Delaunay simplex 
and calculated the subsimplexes related to each corner of the Delaunay simplex. This 
was reasonable for the analysis of interatomic voids, which are represented as clusters 
of Delaunay simplexes. In this paper we discuss pairs A-V without an a priori refer-
ence to Delaunay simplexes, and use the subsimplexes as a general construction ele-
ment for various structures. 

 

d) 
c) 

b) 
a) 



3 Data structure for the recording of subsimplex volumes. 

A Voronoi-Delaunay tessellation defines an enumeration of the Voronoi polyhedra 
(atoms) and Delaunay simplexes. To record their connectivity, a table incidence for 
the DS and VP is used, where the four numbers of the atoms, which form the i-th DS, 
are recorded in the i-th row of the table (array): 

… … … … … 
i A1

i A2
i A3

i A4
i 

i+1 A1
i+1 A2

i+1 A3
i+1 A4

i+1 
… … … … …  

(1) 

Actually each elements of the array (1) represents a pair A-V, mentioned above: a 
Voronoi polyhedron of atom Ak

i (k =1,2,3,4) and its vertex V, which is the “center” of 
the Delaunay simplex with the number i. Thus, such data structure can be used also to 
represent sextets of subsimplexes. 

Having the Voronoi-Delaunay tessellation of a system, all subsimplexes are deter-
mined and their volumes (total, occupied and empty) are calculated according to the 
formulas (A3) ‒ (A9). The signs of the subsimplexes are established, and the volumes 
of the sextets are calculated according to the rule of sign for each pair of VP and DS. 
These data are written in a table similar to (1): 

 

… … … … … 
i V1

i V2
i V3

i V4
i 

i+1 V1
i+1 V2

i+1 V3
i+1 V4

i+1 
… … … … …  

(2) 

where the elements Vk
i can be the values of the total, the occupied, or the empty vol-

ume of the k-th sextet of the i-th DS,  (k =1,2,3,4). 

4 Applications. 

The data structure (2) allows the calculation of the volumes of different structural 
elements, selected in atomic systems by the Voronoi-Delaunay tessellation. Here we 
discuss some of them.  

4.1 Delaunay simplex. 

The total, occupied, or empty volume of the i-th simplex is determined by a simple 
summation of the corresponding elements of the i-th row of the array (2). For the total 
volume, such a summation will always give the correct result, even when the simplex 
is open. Fig. 6 shows a configuration taken from Fig. 2. Here we sum subsimplexes at 
the atoms A, A' and A''. The signs in the figure had been obtained in accordance with 
the rules of signs for subsimplexes and mark different parts to the total volume of the 
simplex of vertex V. We see that a non-zero contribution is obtained only for those 
parts that compose the considered simplex. In this case, the inverted subsimplexes at 
the atoms A and A'' are compensated by the subsimplexes at the atom A'. 



 

Fig. 6. The summation of the sub-
simplex volumes over all atoms of 
any simplex always gives the cor-
rect total volume of the simplex, 
e.g. simplex A, A', A'' of vertex V). 

However, a situation as described in Ref. [1] may appear in the calculation of the 
occupied volume. It is known that a Delaunay simplex may include sections of an 
extraneous atom (not from an own vertex of the simplex), Fig. 7a. The volume of the 
extraneous atom (A) is not considered in the subsimplexes of the neighbor simplex 
(A', A'', A'''), and therefore can not contribute to the occupied volume of this DS. On 
the other hand, this volume is taken into account in the subsimplexes of the simplex 
(A, A'' and A'''), which contains atom A as one of its vertexes, although a part of vol-
ume A is outside the simplex. Thus, the method of subsimplexes does not always give 
the correct occupied volume inside a given simplex. However, for a cluster of these 
simplexes, such as the entire cavity between the atoms A, A', A'' and A''' we get the 
correct value of the occupied volume. 

  
Fig. 7. (a) The penetration of an extraneous atom (A) into the simplex A'A''A''. (b) By a slight 
shift of the atom A', the Voronoi-Delaunay tessellation will be modified and this peculiarity 
disappears. 

Note that for molecular systems, studied in physics and biology, the appearance of 
extraneous atoms in the Delaunay simplexes is a rare event. Fig. 7b shows that the 
non-ordinary atomic configuration of Fig. 7a becomes ordinary after a small shift of 
atom A' in a direction which reduces the cavity between the atoms (such a shift may 
happen with high probability in the subsequent step of a molecular dynamics simula-
tion run of a dense molecular system). A modification of the Voronoi-Delaunay tes-
sellation occurs, and the atom A is no longer an extraneous one for the new DS. 

b) a) 



4.2 A local cavity 

A local cavity is a cluster of Delaunay simplexes, covering a local void in an 
atomic system. The outer faces of these Delaunay simplexes are closed and coincide 
with the closed faces of the neighboring simplexes. In other words, non-ordinary con-
figurations are possible only within the cavity, and each simplex of the cluster has its 
compensating neighbor. As it was emphasized in Ref. [1], the summation of these 
subsimplexes gives the correct result as for the total, as well as the occupied and the 
empty volume of the cavity. 

Thus, when calculating the volume of a local cavity, it is enough to sum all rows of 
arrays (2), which belong to the Delaunay simplexes of a given cavity. 

4.3 Voronoi polyhedron 

Unlike for Delaunay simplexes, an extraneous atom cannot affect the occupied (or 
the empty) volume within a Voronoi polyhedron. Therefore, the subsimplexes related 
to a VP, always give a correct value for the total, as well as the occupied and the 
empty volume of the VP, see Ref. [2]. 

The required sextets can be found with the help of array (1). The number of a given 
atom A, whose VP is considered, is recorded in those rows of array (1), which charac-
terize those simplexes, which have atom A as one of its vertexes. Then the volumes of 
the required sextets are located in the same places in arrays (2), where the atom A is 
located in array (1). 

4.4 Voronoi region of a molecule. 

The concept of the Voronoi region of a molecule in a solution has long been used 
in molecular biology [3,17]. It is represented by the sum of the Voronoi regions of all 
atoms of the molecule in solution. Therefore, the calculation of the volume (total, 
occupied or empty) by the subsimplexes is straightforward, see 4.3. 

Note some subtle differences between the concepts of the occupied (or empty) vol-
ume of the Voronoi region of a molecule and the molecular volume, which are used in 
molecular biology, and can be calculated using the subsimplexes. One usually sup-
poses that the occupied volume of the Voronoi region of a molecule is the van der 
Waals volume of the molecule. This is true only for the case, when atoms of the 
molecule do not cross the outer faces of the Voronoi region of molecule. An overlap 
between an atom of the molecule and an atom of the solvent is shown in Fig. 8. As a 
result, a part of the atom of the molecule is outside its Voronoi region. Usually only a 
small fraction of the volume is lost, and the numeric difference between the occupied 
and the van der Waals volumes is negligible for molecular systems (such overlaps are 
rare events in molecular systems, due to the strong repulsion between close atoms). 
We should keep in mind, the van der Waals volume of the molecule is defined as the 
union of its atoms independently on the solvent. 



 

Fig. 8. Occupied volume of the Voronoi re-
gion of a solute molecule. A part of an atom 
A of the molecule lies outside the Voronoi 
surface of the molecule due to the overlap of 
this atom with an atom A' of the solvent. This 
part does not contribute to the occupied Vo-
ronoi volume of the solute molecule. 

The molecular volume is the van der Waals volume of the molecule together with 
the volume of the inner voids. This is a rather qualitative concept, but a way for a 
quantitative recording of this value can be adopted. Usually it is calculated with the 
help of a Connolly surface [4]. The Voronoi-Delaunay technique provides an alterna-
tive approach. The molecular volume can be calculated by subtracting the volume of 
the boundary voids from the total volume of the Voronoi region of the molecule. In 
section 4.7, we discuss how to estimate the volume of these voids. The molecular 
volume can be also calculated directly by summing the occupied volume of the Vo-
ronoi region and the empty volume of the Delaunay simplexes, which represent the 
inner voids of the dissolved molecule (i.e. the DS having vertices that lie only on the 
atoms of the solute molecule). 

4.5 Voronoi shell. 

The Voronoi shell is defined as an envelope of solvent (water) molecules around 
the solute molecule. This construction was first proposed in Ref. [23] to allocate the 
hydration shell. It can also be used to define successive shells of the solvent, sur-
rounding the dissolved macromolecule [18]. 

Each Voronoi shell is represented by a list of Voronoi polyhedra, forming this 
shell. Since for each VP its total and occupied volumes are calculated accurately (see 
4.3), it only remains to sum all VP, forming the shell, in order to get the desired vol-
ume of the Voronoi shell. 

4.6 Delaunay shell. 

Delaunay shells were proposed for the detection of interatomic voids around the 
solute molecule [15, 18]. The first Delaunay layer is formed by those Delaunay sim-
plexes, which have vertices of both classes of atoms: from the solute molecule and the 
solvent. It is a solid shell of Delaunay simplexes around the molecule [18]. 

The method of subsimplexes gives the correct result for the total volume of the De-
launay layer, since it is the sum of the total volumes of the individual Delaunay sim-
plexes, which are calculated correctly (see section 4.1). 

The occupied and the empty volume may have some inaccuracy. This is due to the 
fact that some DS of the Delaunay shell can have open faces on the outer or inner 
surface of the Delaunay shell. This means that an extraneous atom can penetrate into 
the layer, and its volume will be taken into account incorrectly (see section 4.1). 
However, from our experience, this discrepancy is small enough for molecular sys-



tems. We performed calculations with the molecular models discussed in section 5, to 
compare the results, obtained by the method of subsimplexes and by a different one, 
which we had used in our previous works (see e.g. Ref. [7]). This method combines 
analytical and numerical calculations to find the empty volume of a DS. First, the 
surroundings of a given DS is examined. If there are no extraneous atoms and at most 
a triple overlap of spheres, then analytical calculations of the empty volume are per-
formed. Else, the empty volume of such a simplex is calculated numerically. We used 
this method as reference. It turned out that the maximum difference between the 
methods does not exceed 1% after the treatment of 1000 independent configurations 
of the bio-molecule hIAPP in water. A temperature increase can increase the differ-
ence, because the overlapping of atoms is magnified. However it is only marginal, 
about 0.1% in the whole studied temperature interval. This discrepancy can be ig-
nored in our studies of bio-molecules. Note that the calculations by the method of 
subsimplexes turned out to be two times faster than by our smart combined method. 

To compute the occupied or the empty volume of a Delaunay shell, it is sufficient 
to sum those rows of array (2), which contain the simplexes of a given Delaunay 
shell.  

4.7 Intersection of Voronoi and Delaunay shells. 

Of special interest is the empty volume of the intersection of Voronoi and Delau-
nay shells [19]. The method of subsimplexes allows its calculation, but with some 
inaccuracy, because the intersection may consist of incomplete parts of Voronoi poly-
hedra and Delaunay simplexes. In this case, some of the inverted subsimplexes can be 
uncompensated. Fig. 9 illustrates such a configurations, where two parts of the Vo-
ronoi shell fall outside the Delaunay shell. The volumes, which are sticking out will 
be incorrectly included in the total volume of the intersection. 
 

 

Fig. 9. Illustration of a Voronoi shell, 
which extends beyond the Delaunay shell. 
The two areas, , which are sticking out, 
are dashed. Bold (red) lines border the 
Delaunay shell. Semi-bold (black) lines 
show the Voronoi shell. The intersection 
between the Voronoi and Delaunay shells 
is shaded (pink). Dark disks are atoms of 
the solute molecule, light disks are atoms 
of the solvent. 

In addition, there is the problem of extraneous atoms (see 4.1). However, we also 
think that the resulting inaccuracy is insignificant for our purposes. Unfortunately we 
can not make a quantitative estimation of the inaccuracy. We do not know any other 
method to calculate the empty volume of the intersection, which could be applicable 
for large solute molecules.  

Thus, to calculate the empty volume of the intersection, we need to choose those 
rows in array (2), which correspond to the Delaunay simplexes of the given Delaunay 



shell, but to sum only those sextets which are related to the atoms (VPs) of the given 
Voronoi shell. 

5 Application to the calculation of the volumetric 
characteristics of solutions  

The apparent volume of a solute molecule Vapp (which is the partial molar volume 
at infinite dilution) consists of the molecular volume (VM) of the solute molecule, the 
additional void volume at the boundary between solute molecule and solvent, and the 
contribution of the solvent due to a local change of the solvent density under the in-
fluence of the solute (∆V). The value Vapp is measured in physical experiments or 
calculated independently in computer simulations. The Voronoi-Delaunay method 
helps to find the components [19].  

Fig. 10 illustrates a fragment of a solute molecule in solution. The inner and outer 
boundaries of the first Delaunay shell (dashed lines) and the outer surface of the Vo-
ronoi region of the molecule (solid line) are shown. The Voronoi region of the mole-
cule consists of the molecular volume VM and a part of the empty volume around the 
molecule (in Ref. [19] it is marked VB

M: the part of the boundary volume, which is 
assigned to the molecule). Thus VVor = VM + VB

M . These volumes can be calculated as 
it is described above in sections 4.4 and 4.7. 

 
Fig. 10. A fragment of the boundary area between a solute molecule (dark disks) and the sol-
vent (light disks), taken from [19]. The black thick solid line shows the border of the Voronoi 
region of the molecule (VVor), the so called Voronoi surface. Dotted lines show the inner and 
outer surfaces of the first Delaunay shell. The dark-green area is the boundary empty volume 
assigned to the solute molecule (VB

M). The red thick line over the atomic surfaces and the faces 
of the Delaunay simplexes represents the surface of the molecular volume (VM ) of the solute 
molecule. 

We used the molecular-dynamic models of a single amyloidogenic polypeptide 
molecule (hIAPP) in aqueous solution, generated in Ref. [14] for different tempera-
tures. 1000 independent configurations, equally spaced over the equilibrated produc-
tion runs, were used for averaging. Fig. 11 shows the apparent volume and its compo-



nents for the hIAPP molecule as functions of temperature. Vapp has been determined in 
Ref. [15] and the contribution of solvent was calculated as ∆V = Vapp - VVor.  

 
It is known, that Vapp always grows with temperature. However, its components 

behave in different ways. The molecular volume VM is practically constant with tem-
perature, but the empty volume VB

M increases. Thus one can see, the apparent volume 
grows because of the increase of this boundary empty volume and the decrease of the 
negative contribution of the solvent ∆V . 

These calculations explain the nature of the thermal expansion coefficient of 
hIAPP molecule in water. It is related to the surrounding water, but not to conforma-
tional or density changes of the molecule itself. 
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Fig .10. Apparent volume Vapp of the hIAPP 
molecule in water and its components VM , 
VB

M and ∆V as functions of temperature. 

6 Conclusion 

This paper describes the application of Voronoi-Delaunay subsimplexes, discussed 
in Ref. [1, 2], for the calculation of the occupied and empty volumes in molecular 
systems. A subsimplex is a triangular pyramid constructed at the intersection of a 
Voronoi polyhedron and a Delaunay simplex. There are analytical formulas, to calcu-
late the occupied volume inside the subsimplex. These formulas and the use of a con-
venient data structure to record the subsimplexes, enables a fast calculation of the 
required volumes. Summing up the subsimplexes (using a rule of signs), the occupied 
(or the empty) volume can be calculated for various structures, composed of Voronoi 
polyhedra, Delaunay simplexes and their intersections. In some cases the calculated 
volume might be flawed by slight inaccuracies because of the peculiarities of the Vo-
ronoi-Delaunay tessellation in some rarely occurring local packing structures, but its 
magnitude is not significant for the application to molecular and atomic systems.  

To interpret the experimental volumetric data for protein solutions, one needs to 
know the components of the partial molar volume of the solute molecule and their 



change with temperature or pressure. Traditionally, the considered components are 
the volume of the solute molecule itself (molecular volume), the density change in the 
hydraton water under the influence of the solute (∆V), and the contribution of addi-
tional voids at the border between the solute molecule and the solvent (which relates 
with the so called thermal volume). The decomposition of the solution into Voronoi 
and Delaunay shells helps to select corresponding areas in computer models of solu-
tions, and the proposed approach of the subsimplexes enables the calculation of the 
desired volumes. Using as an example a molecular dynamics model of the protein 
hIAPP in water, the components of the apparent volume of the molecule were calcu-
lated as a function of temperature [19]. This explains the nature of the thermal expan-
sion coefficient of the hIAPP molecule. It originates from the surrounding voids, but 
not from the molecule itself. 
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