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Various hydrogen bond lifetime distribution functions, used to describe the breaking and formation 

dynamics of these bonds in a computer experiment, are examined and relationships between them are 

found. The procedures for calculating these functions by the molecular dynamics method are described and 

the results for water models of 3456 molecules at 310 K are reported. The peak of short-lived spurious H-

bonds, which results from short-time violations of hydrogen bonding criteria induced by dynamic 

intermolecular vibrations of molecules, prevails in the types of distributions most often referred to in the 

literature. A special distribution that appears to have not been used before is proposed. Along with short-

lived bonds, it manifests long-lived ones whose lifetime is determined by the genuine, or random, hydrogen 

bond breaking rather than by dynamic. A technique to exclude dynamic effects and reveal the genuine H-

bond breaking is proposed. This allows the evaluation of the average lifetime of “true” H-bonds that turns 

out to exceed 3 ps. 
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INTRODUCTION 

Hydrogen bonds between molecules in liquid water cannot live long, otherwise it is not clear why water fluidity is 

little different from that in liquids without hydrogen bonding, for example, in benzene. Indirect information on the lifetime of

H-bonds can be derived from experimental data on the relaxation time of various physical properties of water. Thus, the 

relaxation time for water dipole reorientation at room temperature is about 10 ps [1, 2]. The average hydrogen bond lifetime 

will roughly agree with this value because reorientation is impossible without breaking at least one H-bond. However, 

experimental methods cannot yield information on the detailed hydrogen bond dynamics. It can be found only through 

computer simulation by the molecular dynamics method.  

A mere examination by this method of the “life stories” of water molecules shows a high variety in hydrogen bond 

lifetimes ([3], p. 229), some bonds living a few tens of picoseconds. The quantitative analysis of the breaking and formation 

dynamics of H-bonds shall describe statistical patterns observed in large ensembles of hydrogen bonds. Stillinger [4] has 

proposed to use for this analysis the language of correlation functions common in statistical physics. In computer simulation, 

Rapaport was the first to use this language [5]. Since then over 30 papers [6-34] have been published on the molecular 

dynamics study of patterns for breaking hydrogen bonds in both water and other systems with hydrogen bonds [12, 14] under 

different thermodynamic conditions. In addition to correlation functions, various types of distribution functions have been 

used that are more adequate to the problem. Unfortunately, it is often impossible to understand just what function the 
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particular authors used because definitions of the functions and their calculation procedure are not clearly enough described.

A. Luzar [19] has tried to find interrelations between different types of the distribution functions, but her analysis is,

unfortunately, incomplete and insufficient.

In this work, we make an attempt at completing and extending the results of the analytical part in Luzar’s paper. We

give precise definitions of various probability distribution functions describing the breaking and formation dynamics of

hydrogen bonds and establish their interrelations. Procedures to calculate these functions in a computer experiment are

described and their calculation results for one model of water are presented.

1. DEFINITION OF HYDROGEN BONDING

As known, in a computer experiment the full potential of interactions between molecules is set without

distinguishing hydrogen bonding in it. Some additional criteria have to be introduced to show between which molecules this

bonding occurs. The simplest criterion is geometrical. Let us assume that water molecules form H-bonds if the distance

between their oxygen atoms does not exceed some boundary value ROO < ROO*. This criterion can be refined by limiting the

distance between oxygen and hydrogen atoms in the neighboring molecules (ROH < ROH*) and the values of different angles 

in the hydrogen bridge [1, 34, 35]. For example, in our calculations, the results of which are shown below, we have used

boundaries ROO* = 3.3 Å and ROH* = 2.45 Å, but the angles were not restricted. Other, more sophisticated, criteria are also 

applied [29, 34], but they all introduce a conditional boundary in the particular parameter spaces differentiating between H-

bonded and not H-bonded pairs of molecules.

The presence of a fixed boundary in the H-bond criteria arouses an unavoidable difficulty of differentiating between

various situations of the existence of hydrogen bonds in the computer experiment. At any position of the boundary in liquid

and amorphous water, a large fraction of pairs of molecules has characteristics close to boundary ones for a long enough time.

It is impossible to make an unambiguous conclusion whether these pairs of molecules form the H-bond or not. Let us

consider the H-bond between some molecules A and B. Due to intermolecular vibrations (translational and librational) the

distance between them (quasi)periodically changes. These vibrations, with a period of about 100 fs, are well seen in Fig. 1

(similar images can be found in [3, 22-24]).

In the process of vibrations, the distance ROO can sometimes “incidentally,” for 10-20 fs, go beyond the hydrogen

bond criterion (see Fig. 1 near t = 2 ps). No change in the form of vibration is observed, and a small enhancement of the ROO*

Fig. 1. Typical change in the ROO distance
between B (solid line) and C molecules (dash
line) and the molecule A. Heavy lines show
trajectory portions that “randomly” violated 
the hydrogen bonding criterion accepted here
as ROO < 3.1 Å.
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boundary can eliminate these disruptions. Therefore, molecules A and B can be assumed to be still H-bonded. However, the

computer, according to the geometrical criterion, will indicate the hydrogen bond breaking. This is the first situation that can

be called a spurious breaking of the H-bond. Short-lived H-bonds may appear between spurious breakings, and we will call

them virtual hydrogen bonds.

The second situation corresponds to the case when another molecule C, not forming the H-bond with the molecule

A, approaches it, due to diffusion motion, at a distance of ROO < ROO* for a short time (see bold dashes in Fig. 1 near

t = 2.5 ps and 4 ps). This situation can be called a spurious formation of the H-bond (or a spurious H-bond). The intervals of 

the existence of these …  “bonds” are obviously shorter than the lifetime of virtual bonds in the first situation.

Finally, the third situation is the genuine breaking of the hydrogen bond. The H-bond between the molecule A and a

certain molecule B experiences genuine breaking if molecules A and B quickly move apart from each other for a time

noticeably exceeding that of a single oscillation (although later they can join again). The … H-bond switches, as a rule, to 

the …D H-bond with some other molecule D. Fig. 1 demonstrates the genuine (here temporary) breaking of the H-bond

near t = 3 ps (molecule D is not shown). A good example of H-bond switching can be seen in Fig. 4 in [22].

The two first situations (spurious breaking and spurious bond) relate to the behavior of a fixed pair of H-bonded

molecules. It is dynamic, though irregular, because the motion of this pair of … molecules is disturbed by thermal

fluctuations of the environment. On the contrary, the genuine bond breaking, i.e., the A…B bond switching to the A…D bond

at a certain moment, is random in the sense that the moment of switching is not only controlled by the … bond dynamics,

but it is the result of complicated collective motions of the whole system. In the first approximation, the switching of bonds

can be considered to be instantaneous, jump-like, which is commonly assumed in theoretical models of water dynamics [40,

41], but the detailed molecular dynamics indicates “slow jumps” [1].

When the hydrogen bond breaking is mentioned, the genuine breaking is meant. In the computer experiment,

though, the genuine breaking is inevitably confused with spurious breaking and spurious bonds because of the used

conditional criteria for the H-bond. It is desirable to avoid them somehow. Many authors have tried to do this, but the

problem cannot be considered to be solved. It is typical of many authors to state that they do not emphasize that MD

calculations can only provide approximate values of H-bond lifetimes [16] or that it is not easy to unambiguously define the

mean H-bond lifetime HB because of fast librational motions that rearrange the H-bond network producing the breaking and

subsequent reformation of H-bonds in short time intervals [31]. We believe that to solve this problem, first of all, it is needed

to find out how the spurious breaking and spurious bonds manifest themselves in different distribution functions of hydrogen

bond lifetimes.

2. DIFFERENT TYPES OF DISTRIBUTION OF HYDROGEN BOND LIFETIMES

The autocorrelation function (t) is most often calculated. It is the probability that the H-bond existing at the instant

t = 0 will also exist at the next instant t, regardless whether the bond was broken or not in the interval [0-t] and whether it will

exist after the instant t [5, 8, 9, 16-19, 21, 25-34]. Of course, such a function describes the weakening over time of some

correlations in the H-bond dynamics, or, as they say, characterizes the structural relaxation of H-bonds. However, it is not

directly related to the hydrogen bond lifetime. This correlator turns out to be useful for other tasks such as a comparison of 

the rate of decrease of correlations in bulk water with that at the interface [30], in solvate shells [25, 26, 32], or at different

interaction potentials [28].

If the correlator (t) is calculated only up to the moment of the first H-bond breaking, then we obtain the H-bond

survival probability in the time interval [0–t]. We will denote this function by Ca(t), while the probability of the first H-bond

breaking in time t after we have detected it at the moment t = 0 will be denoted by Pa(t) (index “a” means after). Obvious

relations link these functions

a a( ) ( ) ,
t

C t P d (1)
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(2)a a( ) ( ) / .P t dC t dt

The probability distribution function Pa(t) is assumed to be normalized to unity.

The probability distribution function of the total hydrogen bond lifetime Pt(t) is most significant to our problem. It

determines the probability that the H-bond detected at a certain instant of time existed for time t from the moment of its

appearance up to the moment of the first breaking (index “t” means total). It is very important to realize that there are two

variants to determine this distribution that are not differentiated in the literature. Let us start our discussion with the

relationship between distributions Pa(t) and Pt(t). We consider an instantaneous configuration of our system, i.e., the state of

all its hydrogen bonds at a moment t = 0. Then we distinguish bonds in them whose total lifetime amounts to a certain value

. The probability to detect such a bond over a short time interval d  is d / , and the probability for the bond to have the

lifetime  is Pt( ). The value of the function Pa(t) at the moment t after the initial time is formed by only those bonds whose

total lifetime  exceeds the given time t because all other bonds have already been broken. Therefore

a ( ) ( ) .t

t

d
P t P

In this reasoning, the distribution Pt(t) means a fraction of H-bonds that have the total lifetime t in the instantaneous

configuration considered, and hence, in any other statistically representative configuration. Therefore, hereafter we denote

this distribution by Ptc(t), namely the probability of the total H-bond lifetime in a configuration. So we write

a tc( ) ( ) .
t

d
P t P (3)

It implies

Ptc(t)  –t (dPa/dt) (4)

None of the authors of [5-34, 42] seem to represent the distribution of H-bond lifetimes as the distribution Ptc(t).

Another function is usually taken as the distribution of these times (see [6, 7, 19]. Instead of a set of H-bonds in the

instantaneous configuration, let us consider the process of formation and breaking of bonds for a pair of molecules in the

model at a certain trajectory over a rather long time. The fraction of time taken by bonds of the given duration t normalized to

the sum of times of all bonds is, due to the ergodic theorem, our distribution Ptc(t), i.e., the fraction of bonds with the given

total lifetime in any instantaneous configuration. It is possible, however, to calculate the number of H-bonds of this duration t

on this trajectory. Then we obtain the distribution Ptt(t) that can be called the probability of the total H-bond lifetime along

the trajectory. In other words, in the distribution Ptt(t) we calculate the number of pairs of molecules that had a continuous H-

bond during time t, whereas in the distribution Ptc(t) the total time taken by such pairs is found. Therefore, Ptc(t) =  tPtt(t).

The factor B is determined by the normalization condition tc tt tt

0 0

1 ( ) ( )P t dt B tP t dt B ,  i.e.,  = 1/ ttt . So, 

Ptt(t) ttt Ptc(t)/t, (5)

where

(6)tt tt

0

( ) .tP t dt

The value tt is, by the meaning of the distribution Ptt(t), the average hydrogen bond lifetime HB  = tt .

It is also possible to introduce other average time characteristics 

(7)a a

0

( ) ,tP t dt

(8)tc tc

0

( ) .tP t dt
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Substituting in (8) formula (4) and integrating by parts, we obtain the general relationship

82

.tc a2 (9)

The average ta  is not expressed through the average H-bond lifitime tHB . However, from (3) and (5) an interesting

relationship follows

a H(0) =1/ .P t B (10)

From (7) and (1), by changing the order of integration, it is also possible to obtain

a

0

( ) .C t dt a (11)

From (4) Ptc(0) = 0 follows, which is at it should be according to the meaning of the function Ptc(t). As to the value

of the function Ptt(t) at t = 0, it is not expressed through average times. However, it is possible to show that is true.

tc tc a
tt

0 0HB

( )1
(0) .

t t

P t dP dP
P

t dt dt 0t

(12)

A more exotic representation of the distribution Ptt(t) is used in the works [23, 24]. It is the so-called rank

distribution. If the entire set of lifetime values {t} computer calculated for the given model are arranged in increasing order,

the rank distribution is the dependence of the lifetime t on its number N in the series: t = R(N). Let the maximum number in

the series be Nm and W = N/Nm. Then W(t) is what in probability theory is called the probability distribution function of the

random variable t [36]. It is calculated by the distribution probability t, i.e., by Ptt(t):

(13)tt

0

( ) ( ) ( ) .
t

W t P t P x dx

Hence, the rank distribution of hydrogen bond lifetimes is 

(14)1
m( ) ( / ).t R N W N N

Other distribution functions such as the reactive flux correlation functions introduced in [17-19] and used by some

other authors [20, 28, 30, 33] are set aside here. They are intended to interpret the H-bond breaking dynamics in terms of

transition state theory, and their consideration lies beyond the purposes of this study.

3. FREE PATH TIME DISTRIBUTION IN GASES

The problem of the distribution of hydrogen bond lifetimes is similar to that of the free path time distribution in the

gas phase. In all treatises and handbooks on gas-kinetic theory the distribution Pa(t) is always discussed, while the

distribution Ptc(t) is only mentioned sometimes. Nowhere could we find either the formula for Ptc(t) or relationships (3), (4)

linking these two types of distributions. Everywhere it is stated that

Pa(t) (1/ 0)exp(–t/ 0), (15)

where 0 is the average free path time. By our formulae (3) and (5) it follows that

Ptc(t) (t/ 0
2)exp(–t/ 0). (16)

Ptt(t) (1/ 0)exp(–t/ 0). (17)

Of course, tHB  = 0 (see (6)). The function Ptc(t) at t = 0 is zero and has a maximum at tm = t0 (Fig. 2).

Instantaneous collisions of molecules in gas can serve a good model for the genuine breaking of hydrogen bonds.

Then the free path time corresponds to the total time of the hydrogen bond existence, and instantaneous collisions are 

responsible for the H-bond breaking for infinitely small time. The fraction of these infinitely small parts along the trajectory

is Ptt(0) in terms of distribution functions that we introduced. But at the same time, it is simply the frequency of collisions

1/ 0. Therefore, Ptt(0) = 1/ 0, in full compliance with (17). The difference of Ptt(0) from zero in water shows the occurrence of 

genuine hydrogen bond breaking not caused by a violation of the artificial H-bond criteria, and Ptt(0) provides evaluation of



Fig. 2. Distribution functions of free path 
times in gases. Solid line shows 

0Pa(t) = 0Ptt(t), dashes depict 0Ptc(t).

the breaking. Luzar [19] believes that Ptt(0) = 0 because most bonds are formed through libration-like motion that makes an 

immediate breaking unlikely. This reasoning, though, ignores the occurrence of the genuine (“random,” “instantaneous”)

breaking of H-bonds.

The time 0 in our terminology is a . Then, according to (9), tc  = 2 0. The relation between these two times is

interpreted differently in the gas-kinetic literature. In the classic treatise [37], Boltzmann repeats Clausius’s (who first derived

formula (15)) arguments by which he wanted to prove that tc  = a . However, this verbal argumentation is unconvincing.

The majority of authors ignore this problem and only in the Shtrauf’s textbook [38] we could find the correct relationship

tc  = 2 0, but it had also been obtained through verbal reasoning.

4. DISTRIBUTION OF NON-LIFETIMES OF HYDROGEN BONDS

The dynamics of hydrogen bonds substantially differs from the dynamics of molecular motion in the gas phase. In

the gas phase, the molecular free path after a collision instantly alternates with another free path. However, if the proton of a 

water molecule A has ceased to participate in hydrogen bonding with molecule B (we denote it as H-bond breaking), then

some time later it can again take part in H-bonding with it. We call the time interval between successive formations of the

… bond the “non-lifetime” of the hydrogen bond, and the distribution of non-lifetimes is denoted by Pnl(t).

5. COMPUTER CALCUALTION OF DISTRIBUTION FUNCTIONS

We have already mentioned that it is often impossible to understand what kind of distribution function the authors of

the works [5-34] calculated. In order to avoid these ambiguities, we describe the calculation procedures for the distributions

used in detail.

The result of molecular dynamic simulation is that we have a sequence of atomic configurations corresponding to

the system states in discrete moments of time separated by a step of simulation tMD. Using one of the hydrogen bond

criteria, we can calculate the hydrogen bond network for each of these configurations, i.e., a table showing with which

molecules each molecule of the system forms the H-bond.

Let us consider the bonds that existed at the time t = 0 and follow the configurations after the given one, fixing the

moment of the first breaking of each bond considered tafter = ta. The distribution of the values obtained (normalized to their

number at the moment t = 0) is just the distribution Pa(t). Similarly, it is possible to trace the bond from the initial moment to

the moment of its appearance tbefore = tb and to obtain the distribution Pbefore(t) = Pb(t). For each bond, its personal ta and tb are 

not necessarily the same. A summation of times ta and tb of each bond yields the total hydrogen bond lifetime ttotal = tt. It is 

clear that well averaged distributions of these times do not differ from each other, i.e., Pa(t) = Pb(t), and the sum of their

averages shall equal the average total lifetime t  = a  + b  = 2 a , which is well consistent with (9).
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Although the distributions of times ta and tb are equivalent, the distribution of their sum tt in any of the two above 

considered representations substantially differs from Pa(t). If we consider a particular configuration, find ta and tb for each of 

its bonds, calculate its total lifetime (tt = ta + tb), build the distribution of these times, then average it over a sufficient number 

of configurations (preferably independent), we will finally obtain the total lifetime bond distribution in any instantaneous 

configuration under given conditions of simulation Ptc(t). Here the lifetime of the bond present in several successive 

configurations will be taken into account proportionally to the number of these configurations, i.e., proportionally to its 

lifetime. We call this distribution the configuration-averaged distribution. 

If we follow the bonds in the simulation process, fixing the moment of their appearance and breaking and allowing 

for each bond only once at the moment of its breaking (when its lifetime becomes known), regardless to which configuration

it belongs, then we will apparently obtain a different kind of distribution. It will be the trajectory-averaged distribution Ptt(t).

The second distribution shows the probability for the emerging bond to be broken in time t. The first distribution 

reveals the fraction of bonds of any instantaneous configuration in the hydrogen bond network whose total lifetime is equal to 

this time t. Differences in these distributions can be illustrated more vividly by the following example. Let us consider a 

system containing only two bonds, the first of which is alternately broken and reformed, while the second remains unbroken. 

On the trajectory distribution of this system, we observe a high peak at the lifetime of the first unstable bond and a very low

one at the second lifetime of the stable bond. At the same time, in the configuration-averaged distribution Ptc(t), the peak 

corresponding to the stable bond turns out to be higher than that of the unstable bond to the extent in which the total lifetime

of this bond is longer. 

The non-lifetime of the hydrogen bond is determined as follows: if at the moment t = 0 the bond exists, and at the 

moment tMD (at the next step of comparison) it is absent, and it is detected again only at the moment t, then we assume the 

bond non-lifetime to be t – tMD. The distribution of these times is normalized to the number of broken bonds at the next step; 

in this case, the integral from zero to infinity is 1. This distribution of lifetimes Pnl(t) is similar to the trajectory-averaged 

distribution of total lifetimes Ptt(t). The broken H-bond can be reformed again between a pair of molecules in a very long 

time because even in infinite time there is a possibility for former neighbors to occasionally meet. 

All distribution functions presented here were calculated by the molecular dynamics method for a water model with 

a number of particles N = 3456 at a temperature of 310 K and a density of 1 g/cm3. We used the Poltev–Malenkov interaction 

potential [39]. All distributions were averaged over the trajectory of 500 ps to 1-2 ns long. The simulation step tMD was 1 fs 

in most calculation. Data obtained with another step are specially noted. 

6. CALCULATION RESULTS AND DISCUSSION 

Fig. 3 depicts the distribution Pa(t). Almost all authors have calculated it, and they all noted its non-exponential 

character with a faster decline at small times. In our case, the distribution reaches the exponential asymptote with a 

characteristic time of 1480 fs in about 2 ps. A deviation from the exponent at smaller times is usually attributed to the effect

of librational motions. However, the form of the distribution Pa(t) is too inexpressive to yield more meaningful information. 

The diagrams of the of total H-bond lifetime distribution have a quite different form (Figs. 4 and 5). The trajectory-

averaged distribution Ptt(t) has a sharp maximum at 13 fs. Functions of this type were calculated in [6, 7, 19]. However, the 

configuration-averaged distribution Ptc(t) is most informative. It does not seem to have been built in any of the articles that 

we reviewed [5-34, 42]: nothing similar to our representation of Ptc(t) can be found there. In the distribution Ptc(t), three 

maxima are observed at 30 fs, 150 fs, and 700 fs. It reaches the asymptote corresponding to the exponent Pa(t) at about 3 ps 

(Fig. 5b). The contribution of this asymptote, according to (16), has a hump shape with a maximum at t = 1.48 ps. An 

advantage of the function Ptc(t) against Pa(t) and Ptt(t) is that it allows one to observe in detail what occurs to the left of this 

maximum. 

It is well seen in Fig. 5 that at least three distributions with three different lifetimes are required to fill the gap to the 

left from the maximum at t = 1.48 ps. There is no need to give a special physical meaning to the forms of these distributions 



Fig. 3. Distribution Pa(t) is shown by the
solid line. Dashes show the asymptote
Pa(t) = 0.000544 exp(–t/1480). The inset
shows a portion at small times approximated
by the polynomial Pa(t) = 0.00223-4.25
10–6t + …. 

Fig. 4. Comparison of two types of distribution
of the total hydrogen bond lifetime. For Ptt(t)
the Y axis is on the left; for Ptc(t) it is on the
right. Molecular dynamics with a step of

tMD = 0.2 fs; trajectory 2 ns long. The
distributions were calculated independently in
the computer experiment; they are well
recalculated into each other by formula (5). 

Fig. 5. Total lifetime distribution Ptc(t): ( ) over 500 fs, (b) over 3 ps. Dashes depict
approximation by the function Ptc(t) = 10–4[10.6(t/13)2e–t/13 + 6(t/133)2e–(t/133)^2 + 3(t/400)
e–t/400 + 5.44(t/1480)e–t/1480]; thin lines present individual terms of this function.

that we used for the approximation in Fig. 5. However, something useful can be derived from them. The first two peaks

cannot be fitted to the exponent that yields width too large. Therefore we have to multiply it by an additional linear term (see

the formula in the legend to Fig. 5). This may indirectly indicate that these peaks do not describe the random breaking of H-

bonds, but they are of dynamic origin. We believe that the peak at 13 fs corresponds to spurious bonds, whereas the peak at

133 fs can be assigned to virtual bonds between spurious breakings (definitions are given in Section 1). The third distribution

can be represented by the exponent with a time of 400 fs. Exponential distributions must correspond to the genuine breaking

of hydrogen bonds. The presence of two exponents in our approximation certainly does not mean that the model contains

hydrogen bonds of two types. It indicates only that the breaking probability distribution cannot be described by one lifetime.

Still the presence of the exponential asymptote is indisputable. This results in that the Pa(t) derivative is different from zero at 

t = 0 (see the inset in Fig. 3) and, according to formula (12), it leads to that Ptt(0)  0. 

The distributions obtained (before any approximations) are characterized by the following average characteristics:

tHB ttt 450 fs; ta  = 1/2 ttc  = 1240 fs. (18)

If the exponential decay time of 1480 fs is added, then we have three time characteristics of the H-bond dynamics. What do 

they mean? So far it is only possible to say that they relate to a summary process of the existence of hydrogen bonds in which
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Fig. 6. Rank lifetime distribution.
Upper dashes show the position of
the kink at 80 fs, according to Tytik
[23]. Lower dashes show the position
of the distribution maximum Ptt(t) at
13 fs (Fig. 4). 

Fig. 7. Non-lifetime distribution Pnl(t) is
shown by the solid line in comparison with the
lifetime distribution Ptt(t) that is shown by
dashes. Calculated by the trajectory of 1 ns
with a step of 1 fs. 

both the dynamics and random breaking are intricately mixed. Three different numbers reflect different aspects of this

complicated process. Special methods are needed to derive information about the genuine breaking of hydrogen bonds. One

of them is considered below (see Section 7).

Fig. 6. shows the rank distribution calculated by formulae (12) and (13) from Ptt(t). It resembles a similar

distribution for the cluster of 216 water molecules given in the work [23]. We can see that the positions of kinks of this

function, being estimated by eye, poorly agree with features of the distribution Ptt(t); all the more so, it is difficult to see in it 

all details distinctly displayed in the distribution Ptc(t).

Fig. 7 presents the non-lifetime distribution. The distribution maximum is observed at 17 fs, and the average non-

lifetime is about 160 fs. The distribution is normalized to the total number of broken bonds. The 64% of bonds have the non-

lifetime less than 0.5 ps. Another 7% correspond to the next 0.5 ps. The value of the integral from zero to 1 ps is 0.71;

therefore, 29% of bonds were not reformed during 1 ps. Part of them completely broke. The other part will be reformed later

because even in infinite time there is a possibility for former neighbors to meet occasionally. The non-lifetime distribution is

very similar to the distribution Ptt(t), which has already been mentioned in [19]. We assigned the peak at 13 fs in Ptt(t) to 

spurious bonds that appear when the third molecule approaches the given …  pair for a short time. The fact that the peak of

the non-lifetime distribution is located approximately in the same place is likely to mean that the approaching molecule

slightly forces apart the …  bond, driving it outside the boundary of the H-bond criterion, and thus leading to the situation

of spurious breaking. In any case, the similarity of the distributions Pnl(t) and Ptt(t) can in no way be considered as trivial.

7. EFFECT OF THE TIME INTERVAL BETWEEN SUCCESSIVE CONFIGURATIONS

Up to now, we have implied that all configurations of the molecular dynamics simulation are used to calculate the

distributions and to determine the lifetime of H-bonds. However, we can prepare sequences with any time interval t between

configurations. The enhanced interval between the configurations compared leads to that the short lived spurious and virtual

bonds are less taken into account in the distributions because the short-time breaking of H-bonds can fall on those

configurations that were missed in the given sequence. Therefore, for each interval of time between configurations we obtain

a certain distribution of probabilities, different from others, and certain values for the average lifetime. Many authors of the

works cited here [5-34, 42] have repeatedly calculated the distributions with different intervals between the configurations

compared; still this procedure was not systematically analyzed.

Fig. 8 shows the total hydrogen bond lifetime distribution Ptc(t) for the intervals between the configurations

compared of 1 fs, 5 fs, 25 fs, 125 fs, and 500 fs. As seen from the figure, the plots are almost the same for the sequences with
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Fig. 8. Distribution Ptc(t) calculated with
different intervals t between compared
configuration. From top downwards (by the
maximum near 1000 fs): t = 5 fs (does not
differ from t = 1 fs), 25 fs, 125 fs, and
500 fs. The inset presents the initial part of
the same plots.

a small step between configurations (1 fs and 5 fs). All three maxima, i.e., at about 15 fs, 150 fs, and 700 fs, are drawn very

well in both configurations. Only at intervals comparable with these times (25 fs and 125 fs) the distributions begin to

noticeably differ from each other. Note that the rest distributions, Ptt(t) and Pa(t), differ from each other less, even at a large 

value of the time interval between configurations.

Fig. 8 shows that an increase in the interval between configurations even up to 500 fs does not completely exclude

short-lived (spurious) bonds. The average lifetime slowly increases, but does not tend to saturation (Fig. 10). Therefore,

additional procedures are required to derive information on the genuine breaking of H-bonds.

Let us introduce some time limit of the permissible duration of H-bond breaking tbreak and assume that the temporary

bond breaking for a period of no more than tbreak is not the genuine breaking. When calculating the distributions, we consider

this bond to be unbroken and allow for it together with those without any breaking. Fig. 9 depicts the distributions Ptc(t) with

tbreak = 1ps.

As should be expected, the distribution with bond reconstruction after the short-time breaking of less than 1 ps for 

different intervals between compared configurations is almost the same. Even the distribution with the longest interval of

500 fs differs from the rest only in the first and second points. The same stability is also demonstrated by the average lifetime

of bonds with permissible temporary breaking (Fig. 10). It should be noted that the numbers given in the figure are obviously

underestimated because a rather high number of bonds has the lifetime longer than 15 fs under this definition (the distribution

has not yet declined to zero, see Fig. 9). 

The general form of distributions after 3 ps is well described by formula (16) for random breaking in the gas phase

with time 0 = 3.5 ps (Fig. 9). This time is close to the average H-bond lifetime HB  = 1/2 tc = 3.2 ps (Fig. 10). Hence,

three different times noted in (18) now become almost equal to each other. Therefore one may assume this procedure of

levelling the contributions of spurious breakings and spurious bonds to provide better understanding of properties of the

genuine hydrogen bond breaking.

CONCLUSIONS

We have examined different hydrogen bond lifetime distribution functions and established relationships between

them. In the distribution of total trajectory-averaged lifetimes Ptt(t), preferred by many authors, only one peak at 15 fs is

distinctly seen. Substantially more details are revealed by the configuration-averaged lifetime distribution Ptc(t). The maxima
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Fig. 9. Distribution  at 

permissble temporary breaking of bonds
less than 1

break
tc ( )P t

ps. Solid lines are the
distributions with intervals t between
compared configurations of 5 fs, 125 fs,
and 500 fs. Dashes depict the exponent
with time 3.5 ns, i.e., Ptc(t) = 2.64 10–4

(t/3500)e–t/3500.

Fig. 10. Dependence of the average
hydrogen bond lifetime ttc  on the
interval between compared t
configurations: (at the bottom)
without breaking, (on the top) with
permissible breaking less than 1 ps.

of this distribution at about 15 fs and 130 fs are spurious H bonds and virtual bonds formed between spurious breaking. They

arise due to short-time violations of the hydrogen bond criteria in dynamic intermolecular vibrations of molecules. Thus,

these two first maxima reflect the least interesting moments in the dynamics of H bonds.

The genuine breaking of hydrogen bonds is of much more interest. It is determined by “random” H-bond switching

from one molecule to another rather than by intermolecular vibrations. The third maximum of the distribution Ptc(t) at 700 fs 

and a remote asymptote, well described by the exponent in the distribution Pa(t) and by the corresponding “humpy” function

(16) in the distribution Ptc(t), correspond to genuine breaking. This asymptote is similar to the free path time distribution in

gases, and instantaneous collisions in the gas phase that interrupt a free path are a good model for the random,

“instantaneous” breaking of hydrogen bonds. The presence of the exponential asymptote proves the existence of the random

H-bond breakings. The latter also determines the non-zero value Ptt(0), which, according to (17), is a frequency of the 

instantaneous breaking.

In order to diminish the effect of dynamic breaking on the lifetime distribution and thereby reveal the genuine

“random” breaking, we have used a procedure that simply neglects short-time breaking of bonds. It was assumed that the

short-time bond breaking of less then 1 ps is not the genuine breaking, and therefore, the time during which the bond is in this

state of short breaking is considered to be a part of its total lifetime. When calculating the distributions, such “discontinuous”

bonds were taken into account together with those without any breaking. The interval of the selected permissible breaking of

1 ps exceeds by the order of magnitude the period of librations and is several times less than the expected average lifetime of

H-bonds between genuine breaking. Hence, it is reasonable to expect the dynamic effects to be suppressed in this procedure,

which has been demonstrated by our calculations. However, this method fails to completely eliminate the effect of librations,

and further efforts should be made to develop methods to analyze the time evolution of hydrogen bonds.

The work was supported by RFBR grant No. 06-03-32479a.

REFERENCES

1. G. G. Malenkov, J. Struct. Chem., 47, Suppl., pp. S1-S31 (2006).

2. W. J. Ellison, K. Lamkaouchi, and J. M. Moreau, J. Mol. Liq., 68, Nos. 2/3, 171-279 (1996).

3. G. G. Malenkov and D. L. Tytik, Method of Molecular Dynamics in Physical Chemistry [in Russian], Tovbin Yu. K.

(ed.), Nauka, Moscow (1996), pp. 204-234.

88



89

4. F. Stillinger, Adv. Chem. Phys., 31, 1-101 (1975).  

5. D. C. Rapaport, Mol. Phys., 50, 1151-1162 (1983). 

6. H. Tanaka, K. Nakanishi, and N. Watanabe, J. Chem. Phys., 78, 2626-2634 (1983). 

7. A. Geiger, P. Mausbach, J. Schnitker, et al., J. Phys. (Paris), 45, 7-13 (1984). 

8. D. A. Zichi and P. J. Rossky, J. Chem. Phys., 84, 2814-2826 (1986). 

9. A. C. Belch and S. A. Rice, ibid., 86, 5676-5682 (1987). 

10. F. Sciortino and S. L. Fornili, ibid., 90, 2786-2792 (1989). 

11. F. Sciortino, P. H. Poole, H. E. Stanley, and S. Havlin, Phys. Rev. Lett., 64, 1686-1689 (1990). 

12. M. Matsumoto and K. E. Gubbins, J. Chem. Phys., 93, 1981-1991 (1990). 

13. M. Ferrario, M. Haughney, I. R. McDonald, and M. L. Klein, ibid., 93, 5156-5166 (1990). 

14. P. Sindzingre, and M. L. Klein, ibid., 96, 4681-4692 (1992). 

15. S. Saito, and I. Ohmine, ibid., 102, 3566-3579 (1995). 

16. J. Marti, J. A. Padro, and E. Guardia, ibid., 105, 639-649 (1996).  

17. A. Luzar and D. Chandler, Nature, 379, 55-57 (1996); Phys. Rev. Lett., 76, 928-931 (1996). 

18. A. Luzar, Chem. Phys., 258, 267-276 (2000).  

19. A. Luzar, J. Chem. Phys., 113, 10663-10675 (2000). 

20. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett., 82, 2294-2297 (1999); Phys. Rev. E, 62, 579-587 (2000). 

21. N. Yoshii, S. Miura, and S. Okazaki, Bull. Chem. Soc. Jpn., 72, 151-162 (1999). 

22. G. G. Malenkov and D. L. Tytik, Izv. Ross. Akad. Nauk, Ser. Phys., 60, No. 9, 85-90 (1996). 

23. G. G. Malenkov and D. L. Tytik, ibid., 64, 1469-1474 (2000).  

24. G. G. Malenkov, D. L. Tytik, and E. A. Zheligovskaya, J. Mol. Liq., 82, 27-38 (1999).  

25. A. Chandra, Phys. Rev. Lett., 85, 768-771 (2000). 

26. S. Chowdhuri and A. Chandra, Phys. Rev. E., 66, 041203 (2002). 

27. H. Xu and B. J. Berne, J. Phys. Chem. B., 105, 11929-11932 (2001). 

28. H. Xu, H. A. Stern, and B. J. Berne, ibid., 106, 2054-2060 (2002). 

29. P. Raiteri, A. Laio, and M. Parrinello, Phys. Rev. Lett., 93, 087801 (2004). 

30. P. Liu, E. Harder, and B. J. Berne, J. Phys. Chem. B., 109, 2949-2955 (2005). 

31. M. D. Elola, and B. M. Ladanyi, J. Chem. Phys., 125, 184506/1-13 (2006). 

32. I. Hanasaki and A. Nakatani, ibid., 124, 174714/1-9 (2006).

33. H.-S. Lee and M. E. Tuckerman, ibid., 126, 164501 (2007). 

34. R. Kumar, J. R. Schmidt, and J. L. Skinner, ibid., 126, 204107 (2007). 

35. Yu. M. Kessler and V. E. Petrenko, Water: Structure, State, Solvation. Recent Achievements [in Russian], 

A. M. Kutepov (ed.), Nauka, Moscow (2003), pp. 6-106.  

36. H. Cramer, Mathematical Methods of Statistics, Princeton University Press (1946).  

37. L. Boltzmann. Vorlesungen über Gastheorie, 1.Teil. Dritte Auflage. Lpz. (1923). 

38. E. S. Shtrauf, Molecular Physics [in Russian], Gostekhizdat, Moscow (1949). 

39. V. I. Poltev, T. A. Grokhlina, and G. G. Malenkov, J. Biomol. Struct. Dyn., 2, 413-429 (1984). 

40. L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov, J. Struct. Chem., 47, Suppl., S54-S64 (2006).  

41. L. A. Bulavin, T. V. Lokotosh, and N. P. Malomuzh, J. Mol. Liq., 137, 1-24 (2008). 

42. V. E. Petrenko, A. V. Borovikov,  M. L. Antimpova, and O. V. Ved, Zhurn. Fiz. Khim., 81, No. 11, 1-6 (2007). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Time-Roman
    /Time-RomanBold
    /Time-RomanBoldItalic
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.755 8418.897]
>> setpagedevice


