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a b s t r a c t

Potential of hydrogen bond is the function which relates its energy to geometrical parameters of hydrogen
bridge: its length R(O. . .O) and angles between direction O. . .O and OH group [ϕ (H–O. . .O)] and/or lone
pair of proton accepting oxygen atom [�(–O. . .O)]. Previously we have suggested an approach to design
such potentials based on the approximate numerical solution of a reverse problem of the spectrum band
shape in the frames of the fluctuation theory of hydrogen bonding. In the given work this method is applied
to construction of the two-parameter potentials that depend on parameters {R(O. . .O), ϕ (H–O. . .O}
or {ϕ (H–O. . .O), � (–O. . .O)}. Using them, the spectra of OH vibrations of HOD molecules in a liquid
phase are calculated theoretically in good agreement with experiment in the temperature range up to
200 ◦C. Distributions of angles P(ϕ, T), P(�, T), and energies P(E) are calculated also. The same distributions
and spectra are independently calculated on the basis of the geometrical parameters of the hydrogen
bridges obtained from molecular dynamics models of water. The shapes of the spectral contours and
their temperature evolution calculated for computer models turned out to be similar to experimental
ones only for the potential that includes the length of H-bond R(O. . .O).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen bonds play an important role in structure formation
of various systems and also define a structure and unique prop-
erties of liquid water as a cradle of a life. Thus investigations of
different aspects of H-bonding became the area of interests for the
chemical scientific community. Main features of water and dilute
aqueous solutions are defined by a three-dimensional network of
hydrogen bonds between its molecules. The detailed information
on the arrangement of this network can be obtained basically by
methods of computer simulations. However in these methods the
total potentials of intermolecular interactions are used in which the
contribution of hydrogen bonds is not separated. Therefore we are
obliged to define the existence or absence of H-bond between a pair
of molecules on the basis of artificial criteria establishing allow-
able values for geometrical and/or energy parameters of hydrogen
bridge O–H. . .O.

Meanwhile, vibrational spectra are very sensitive to hydro-
gen bonding. Frequency of the stretching vibration of OH group,
�OH, decreases under the influence of H-bond relative to the non-
perturbed value �u; the shift (�u − �OH) being proportional to the

∗ Corresponding author. Fax: +7 383 330 73 50.
E-mail address: efimov@kinetics.nsc.ru (Y.Ya. Efimov).

energy of H-bond as a first approximation [1]. This shift is much
larger than small shift due to van der Waals interactions which is
practically identical for all OH oscillators (in various molecules).
Thus, the width and the shape of a stretching band are defined
exclusively by hydrogen bonds, reflecting their variety (fluctua-
tions). This reasoning is a basis of the fluctuation theory of hydrogen
bonding [2–5] that specifies interdependence between energy of H-
bond and frequency of involved oscillator E(�) and also establishes
a relation of E(�) with the distribution of stretching vibrations P(�).

So, we have two aspects in the description of ensemble of
hydrogen bonds: (1) computer methods allow to evaluate a con-
figuration of any hydrogen bridge O–H. . .O, i.e. distance R (O. . .O)
and angles H–O. . .O and –O. . .O on the basis of the total poten-
tial in which H-bond is not separated; (2) vibrational spectra allow
to find the distribution of stretching frequencies P(�) and distribu-
tions of corresponding energies of hydrogen bonds P(E) for different
temperatures. Combination of these aspects makes it possible to
determine how energy of H-bond (or frequency �OH) must depend
on the set of geometrical parameters of the hydrogen bridge {G} in
order to describe distributions of frequencies P(�, T) obtained from
experimental spectra of molecules HOD at different temperatures.
Required expression E({G}) we name the potential of H-bond.

We have offered in [6] the method for calculation of the poten-
tial of H-bond on a basis of both spectroscopic data and the known
empirical correlations between spectra and the results of struc-

1386-1425/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Fig. 1. Factors of weakening of hydrogen bond due to the bend of angles ϕ (thick
curves 1a and 2a) and � (curves 1b and 2b). Curves 1 correspond to a version 1: Eq.
(5a), curves 2 correspond to a version 2: Eq. (5b). Angles ϕ and � are in radians.

tural investigations. Two simplest possibilities were considered:
the H-bond potential depends only on the length of the hydro-
gen bridge, RO. . .O, or only on the angle of its bend ϕ (H–O. . .O).
The assumption of one-parametrical potential of H-bond allowed
us to find this potential strictly; however the obtained inter-
relations between geometrical parameters, frequency of the OH
vibration and the energy of hydrogen bond have turned out to
be in the evident contradiction with other known data. Hence,
the one-parametrical description of the potential of H-bond is
insufficient.

In [7] the developed method has been used for designing
many-parameter potentials of hydrogen bond. The two cases were
investigated in details, when the energy depends simultaneously
on two geometrical parameters of the hydrogen bridge: either
RO. . .O and ϕ(H–O. . .O) or ϕ(H–O. . .O) and �(–O. . .O). Here we
present more perfect variant of the solution for two-parametrical
potentials and also compare the results following from it with
experimental spectra and with data of computer simulations of
water.

2. Theory: designing of multiparametric potentials of
H-bond consistent with spectroscopic experiment

According to the fluctuation theory of hydrogen bonding, wide
bands of stretching vibrations of water molecules in a liquid are
a consequence of the statistical distribution of configurations of
hydrogen bridges O–H. . .O [3]. They differ from each other with
geometrical parameters and energies of H-bonds that lead to vari-
ous low-frequency shifts of the vibration frequencies of OH groups
relative to non perturbed (without H-bonds) values [3,8]. In static
approximation, the distribution of frequencies of these vibrations
at a temperature T represents a statistical contour P(�) that can be
well described by Boltzmann’s formula [2]:

P(v, T)∼W(v)exp
[−E(v)

kBT

]
. (1)

Here E(�) is the energy of the hydrogen bond corresponding to given
frequency �, and W(�) is a degeneracy of states; the latter repre-
sents a fraction of configurations of the hydrogen bridges capable
to give the frequency �. Functions W(�) and E(�) do not depend on
temperature and can be obtained from experimental vibrational
spectra of molecules HOD diluted in D2O (in order to exclude intra-
and intermolecular couplings between different oscillators OH) as
it was done in our works [3,5]. The idea of the approach offered in
[6] consists in filling the phenomenological formula (1) by struc-
tural content. We want to express the energy of hydrogen bond
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Fig. 2. Distributions of frequencies of stretching vibration of the HOD molecules
(diluted in D2O). Calculations according to the (ϕ, �)-potential: thick lines corre-
spond to variant 1 [formula (5a)], points – to variant 2 [formula (5b)]. Thin lines:
statistical contours calculated from experimental spectra of isotropic component in
Raman spectra in Ref. [5a]. (a) 10 ◦C, (b) 90 ◦C and (c) 200 ◦C.

E and its degeneracy W through geometrical parameters of the
fragment O–H. . .O which generate in a spectrum the given fre-
quency �. There are three parameters of the hydrogen bridge: its
length RO. . .O and two angles ϕ (H–O. . .O) and � (–O. . .O) between
OH group and a lone pair of proton accepting oxygen atom with
direction O. . .O which mainly influence the frequency �OH. Thus, to
solve the above problem we are to find such dependence of � (and
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Fig. 3. Distribution functions of angles P(ϕ) calculated according to the formula (7)
using the (ϕ, �)-potential in comparison with distributions obtained from molecular
dynamics models. Thick lines: variant 1, thin dashes: variant 2, gray lines (practically
coinciding with variant 1): calculations with the (R, ϕ)-potential; points: results of
molecular dynamics. (a) 10 ◦C, (b) 90 ◦C and (c) 200 ◦C.

thereby E) on (R, ϕ, �) which would describe the shape and temper-
ature evolution of bands in experimental spectra according to the
formula (1).

In [6] two elementary models have been considered, when the
frequency �OH (and also energy of H-bond) depends on a single
parameter: lengths of the bond R (how it was supposed in [9–11]),
or its bend ϕ (as in [12,13]). In these models the task in view has
unequivocal solutions: �OH (R), or �OH (ϕ) accordingly. However
these formal solutions are physically unsatisfactory as they contra-
dict the dependence of the frequency �OH and energy of H-bond on
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Fig. 4. Distribution functions of angles P(�) calculated with (ϕ, �)-potential. Thick
lines: variant 1, dashes: variant 2; thin lines correspond to molecular dynamics
results. (a) 10 ◦C, (b) 90 ◦C and (c) 200 ◦C.

the geometry of the hydrogen bridge that are known in a number
of concrete cases.

If the desired potential of hydrogen bond depends on several
geometrical parameters then the search of dependence �OH (G)
leads to the incorrect reverse problem whose solution demands
special approaches and simplifying assumptions. In [7] an attempt
of designing two-parameter potentials of hydrogen bond has been
made when its energy depends on two geometrical parameters
of the hydrogen bridge: either {RO. . .O and ϕ (H–O. . .O)} or {ϕ
(H–O. . .O) and � (–O. . .O)}.

Calculation is based on two simplifying assumptions. First, it is
postulated that the degeneracy W (R, ϕ, �) is defined by purely geo-
metrical probability for the proton-donor group O–H of one water
molecule to meet a proton acceptor atom O of other molecule at
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Fig. 5. Distributions of OH vibration frequencies of HOD molecules calculated on
the base of the (ϕ, �)-potential with (ϕ, �) data set from molecular dynamics model
of water. Thick lines: variant 1, thin lines: variant 2, dashes: statistical contours from
Raman experiment [5a]. (a) 10 ◦C, (b) 90 ◦C and (c) 200 ◦C.

distance RO. . .O with the given angles ϕ and �:

W(R, ϕ, �) = 4�R2 sin(ϕ)sin(�). (2)

Thus, the degeneracy of the given configuration of the hydrogen
bridge does not depend on H-bond energy, as it must be. The latter
defines the total probability of realization of such configuration for
a temperature T by a multiplier exp[−E(R, ϕ, �)/kBT], as well as in
the formula (1).

Secondly, it is accepted that influence of the hydrogen bond
length R and both angles of its bends ϕ and � on the low-frequency
shift of frequency �OH relative to non perturbed (“monomeric”)
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Fig. 6. Frequency distributions of stretching vibration of the HOD molecules (diluted
in D2O). Points represent calculation according to the (R, ϕ)-potential of hydrogen
bonds by formula (9) with �(R, ϕ) dependence under formulas (10)–(13). Circles:
23 ◦C, diamonds: 85 ◦C, and triangles: 200 ◦C. Lines are statistical contours calculated
from experimental spectra of isotropic component in Raman spectra in [5a].

value �u = 3707 cm−1 is multiplicative:

(vu − vOH) = ˚(R) F(ϕ) f (�). (3)

3. Results and discussion

3.1. Potential with two angles

Let the frequency �OH does not depend on the bond length R
and is entirely defined by angles of its bend ϕ and � that weaken
H-bond (in the range from the minimum possible frequency for
water �min ≈ 3120 cm−1 for ϕ = � = 0 [3] up to �u = 3707 cm−1 for
the limiting value of any angle). Then it is possible to write down
the relation:

(vu − vOH) = (vu − vmin)F(ϕ)f (�). (4)

It is reasonable to consider that functions F(ϕ) and f(�) decrease
monotonously from unit to zero with increasing a corresponding
angle from zero (linear hydrogen bond) to the limit values ϕlim or
�lim that leads to breakage of this bond. The lower and upper esti-
mations of product F(ϕ)·f(�) were made in [7] under the assumption
about symbiosis in the behavior of functions F(ϕ) and f(�). These
two borders designated as ˚1 (˛) and ˚2 (˛) were presented in [7].
The optimum solution was searched numerically using a method of
histogram integration (see lower); the best fitting to the function
W(�) in the formula (1) (known from the infrared experiments) was
the criterion of the solution quality. In the given paper two variants
are considered for search of functions F(ϕ) and f(�):

F(ϕ) = ˚1(ϕ)a, f (�) = ˚2(�)b, (5a)

F(ϕ) = ˚2(ϕ)u, f (�) = ˚1(�)v. (5b)

Limiting angles ϕlim and �lim have been set equal to 75 degrees:
it influences only the scale of an axis of angles (see [7]) and can
be modified if necessary. A procedure of histogram integration is
as follows. We go over a lot of independent pairs of angles (ϕ, �),
with equal small steps and with equal weights in the range [0–75 ◦]
each. Then the product dW (ϕ, �) = sin(ϕ)·sin (�) is calculated as the
contribution of the given angle pair to a degeneracy of the states
(2) that generates frequency �OH defined by formula (4) for the
given pair of angles. The calculated quantity dW is added to the
contents of the “box” (channel) of histogram (with width 10 cm−1)
that corresponds to a frequency �OH ± 5 cm−1. Thus, about 106 pairs
of angles are analyzed, each of “boxes” being contained the sum of
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Fig. 7. Distributions of OH vibration frequencies of HOD molecules calculated on the
base of the (R, ϕ)-potential by formula (9) with (R, ϕ) data from molecular dynamics
model of water. (a) 23 ◦C, (b) 85 ◦C and (c) 200 ◦C. Solid lines – calculation; dashes –
statistical contours obtained from experimental spectra.

contributions dW (ϕ, �) only of those pairs which generate fre-
quency �OH ± 5 cm−1. The best agreement of calculated function
W(�) with the experimental one has been found for the first variant
at a = 0.67, b = 0.42 in the formula (5a), and for the second variant
at u = 0.47, v = 0.75 in the formula (5b). In both cases the sum of
powers in functions ˚1 and ˚2 is close to unit; that is clear as each
of them approximates product F(ϕ) f(�). The functions obtained are
displayed in Fig. 1. Substitution (5) into (4) allows to connect fre-
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quency � with angles ϕ and �, i.e. solves a problem in the given
formulation.

Test of the found solution by a method of histogram integration
shows that reconstructed function W(�) corresponds rather well
to experimental one for both variants of the definition of functions
F(ϕ) and f(�). Some small distinctions reflect the approximate char-
acter of the solution. In [7] other solution differing from given here
has been given; that variant led to a little bit worst reconstruction
of W(�).

Spectra of OH vibrations of molecules HOD are calculated sim-
ilarly to evaluation of the function W(�). However, “boxes” of the
histogram contain now not contributions of different pairs of angles
to the degeneracy dW (ϕ, �) = sin (ϕ) sin (�), but their products with
the Boltzmann factor exp[−E(ϕ, �)/kBT] (according to formula (1))
for the appropriate frequencies. The energy of hydrogen bond in a
configuration (ϕ, �) is approximated by the formula:

E(x) = −0.07x + 0.000104x2 − 0.493 × 10−6x3 + 0.1224 × 10−8x4

− 0.828 × 10−12x5 (6)

found in [4]. Here x = 3707 − �OH (E in kJ/mol, �OH in cm−1). Fre-
quency �OH should be expressed therein through ϕ and � by means
of formulas (4) and (5).
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Spectra calculated by this way are shown in Fig. 2. One can
see that they rather well reproduce experimental spectra. This
demonstrates a good quality of the (ϕ, �)-potential for hydro-
gen bond designed by us. In calculated spectra, as well as in
experiment, “Walrafen’s shoulder” nearby 3650 cm−1 is weak for
T = 10 ◦C; for 90 ◦C it reaches the intensity of a low-frequency max-
imum (≈3500 cm−1), and for T > 100 ◦C it becomes the dominating
component. Within the frames of the given model this picture can
be explained by sharp growth of the fraction of the bent hydro-
gen bonds with increasing temperature. The model also properly
describes the behavior of spectra at negative temperatures: shift
of the maximum toward lower frequencies, narrowing of the band
and disappearance of the shoulder of “weak” H-bonds in super-
cooled water.

At last, having modified the formula (1) of the fluctuation the-
ory it is possible to calculate distribution function of angles ϕ and
� corresponding to the given potential, and also its temperature
dependence:

P(ϕ, �, T) = Q−1(T)sin(ϕ)sin(�)exp
[−E(ϕ, �)

kBT

]
(7)

Calculated distributions P(ϕ, �) significantly broaden with increas-
ing temperature, and in distribution of angles � (orientations of
lone-pairs) an obvious shoulder appears for large angles. Unfortu-
nately, experimental data on pair distribution of these angles in
liquid water are unknown to us.

Integration of the pair distribution function of angles P(�, �) over
ϕ or � gives one-dimensional distributions of angles P(�) and P(ϕ)
that are shown in Figs. 3 and 4 together with the results of next
Section 3.2. Though they do not reproduce well the distributions
of the same angles obtained from computer models, but are much
more similar to them than calculated in [6] on the basis of one-
parametrical potential E (ϕ).

In addition, we calculated the distributions of frequencies of
the OH vibrations using the same (ϕ, �)-potentials (formulas (4)
and (5)) applied to a set of pairs angles (ϕ, �), which were taken
from molecular dynamics models (see Appendix A). They rather
poorly agree with the experiment (Fig. 5). For low temperatures
the version 1 (formula (5a)), and for high temperatures the version
2 (formula (5b)) appears a little bit best.

3.2. Potential with the H-bond length and the angle of its bend

Let us consider now the second type of two-parametrical poten-
tials. Let frequency �OH (and energy of H-bond) depends on the
length of this bond R = RO. . .O and the angle ϕ. Then purely geo-
metrical probability (without the accounting for a role of energy)
to meet the oxygen atom of proton accepting molecule, located at
a distance R ± dR/2 and an angle ϕ ± dϕ/2 relative to OH group of
proton donor molecule H2O, is defined by differential of the area of
conic section of a spherical layer:

W(R, ϕ)dRdϕ = 4�R2 sin(ϕ)dRdϕ. (8)

Then the general formula (3) transforms to

(vu − vOH) = ˚(R)F(ϕ). (9)

As a radial dependence ˚(R) we used the empirical correlation
found for �OH frequency in the spectra of crystalline hydrates,
where hydrogen bonds are close to linear [14] (R in angstroms):

˚(R) = 2.222 × 107 exp(−3.925R). (10)

The search for function F(ϕ) is very complicated problem. In
[7] the approximate solution is received in rather subtle way; it
can be analytically approximated by the sum of two exponents

monotonously falling down to zero for big angles:

F1(ϕ) = exp(−0.3 − 1.25ϕ) + 0.26 exp(−100ϕ2), (11)

(angle ϕ in radians). However, unlike curves F(ϕ) and F(�) in Fig. 1,
this function does not vanish when ϕ tends to the limit value. As a
result, the calculated distribution of angles P(ϕ) does not become
zero at ϕlim. To correct this shortcoming we multiply the angular
factor of weakening of H-bond (11) by the function which does not
deform its form in the basic area of values but sharply decreases
close to ϕlim:

G(ϕ) = exp
[
− ϕ

1.29

]50
. (12)

We use as F(ϕ) in all further calculations the modified function:

F(ϕ) = F1(ϕ)G(ϕ). (13)

Substitution of formula (13) into (9) defines dependence of fre-
quency �OH on the length of H-bond and the angle of its bend;
subsequent use of formula (6) defines dependence of the energy of
H-bond on these parameters. Verification of the found solution of a
reverse problem by calculation of function W(�) (i.e. a direct prob-
lem; the way of calculation is described above) confirms its quite
good quality if Rlim = 3.05 Å. Such short limit means that excessive
lengthening of hydrogen bond in liquid water results in its break-
age with switching to new H-bond with more efficiently located
partner. In crystalline hydrates or water dimers in gas phase such
a possibility is absent and much lengthy (up to 3.5 Å) and weaker
H-bonds are found in experiments.

Fig. 6 shows the spectra calculated by formula (9) on the
base of parameters (R, ϕ) from formulas (10)–(13) in comparison
with experiment for three selected temperatures. We see that our
approximate solution for (R, ϕ)-potential gives a quite satisfactory
description of spectra.

Distributions of geometrical parameters of the hydrogen bond
corresponding to the given model of potential are defined by the
expression:

P(R, ϕ, T) = Q−1(T) 4�R2 sin(ϕ) exp
[−E(R, ϕ)

kBT

]
, (14)

where Q(T) is the statistical integral normalizing distribution (14)
at a temperature T.

One-dimensional distribution functions of angles ϕ have the
form and temperature behavior practically coinciding with those
calculated with potential E(ϕ, �) in its first version (Fig. 3). It is
a little unexpected as no efforts were made for coincidence of two
essentially different solutions. Thus, obtained distributions P(ϕ) are
rather far from the distributions directly following from computer
models (points in Fig. 3).

Distribution functions of bond lengths P(R) obtained by the
integration (14) over ϕ are much wider than those found in one-
parametrical approach of potential E(R) [6]. However they still
cardinally differ from the experimental radial distribution func-
tions of water by absence of a maximum of distribution. The reason
is clear: the absence of repulsive (van der Waals) interactions in a
radial part of our potential. It is a basic difference of our hydrogen
bond potential from the total potentials of intermolecular interac-
tions used in computer simulations. Not suitable for modeling the
structure of a liquid, it is intended for the quantitative description of
properties of separate hydrogen bonds and their systems in already
created (with the total potential of interactions) computer models.

Distributions of OH vibration frequencies calculated by formulas
(9)–(13) for the set of configurations (R, ϕ) in molecular dynamics
models are shown in Fig. 7. They significantly better agree with the
experiment than if pairs (ϕ, �) are used with the (ϕ, �)-potential
(cf. Fig. 5). These pictures are, may be said, a main result (or goal) of
this paper. They demonstrate that it is possible to construct such an
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H-bond potential which give correct description of OH frequencies
on the base of geometrical parameters of the H-bridge. They show
also that the H-bond length R and the angle of its bend ϕ must be
used as the principal parameters.

The method of histogram integration allows us to calculate the
distribution of hydrogen bond energies at various temperatures in
a way similar to calculations of functions W(�) and P(�, T). Fig. 8a
shows that at low temperatures strong “ice-like” hydrogen bonds
with energy nearby 20 kJ/mol prevail in water. The fraction of
weaker H-bonds monotonously decreases with vanishing E (curve
1). At 200 ◦C the inverse situation takes place, and weak H-bonds
with energy ≈6 kJ/mol dominate (curve 4). It is interesting that all
energies from 6 to 20 kJ/mol are presented practically with equal
weight at 90 ◦C (curve 3). A sharp maximum in the distribution P(E)
and break at −21 kJ/mol has no physical meaning. Termination at
−21 kJ/mol reflects the absence of energies smaller than −21 kJ/mol
in the used potential; infinite value of P(E) at Emin arises from
P(E) = P(�)/|∂E/∂�| because the E(�) dependence in equation (6) has
a minimum at Emin where the derivative |∂E/∂�| vanishes. However
function P(E) does not diverge; that is confirmed by the calcula-
tion over discrete intervals of energies E in a method of histogram
integration.

Distributions of H-bond energies obtained from the set of
O–H. . .O configurations in molecular dynamics models are pre-
sented in Fig. 8b. They qualitatively agree with calculations
according to the fluctuation theory (Fig. 8a).

4. Conclusions

Two important problems have been solved in the paper:

1. We managed to find the quantitative dependence of H-bond
energy on the geometrical parameters of hydrogen bridge
O–H. . .O (the H-bond potential) that is consistent with the
experimental band shape of water OH vibrations and their tem-
perature evolution in the frames of the fluctuation theory of
hydrogen bonding. It became possible due to extremely high
sensitivity of the OH frequency on H-bond energy.

2. The designed H-bond potential allows us to calculate the distri-
butions of OH frequencies on the base of geometrical parameters
of the H-bridge found in the molecular dynamics models of
water. This approach to calculation of the stretching OH fre-
quencies is alternative to well known quantum mechanical
procedures [17]. We show that spectra, calculated in such a
manner, agree quite well with experimental spectra of HOD
molecules dissolved in D2O for temperatures from 10 up to
200 ◦C, if H-bond length R(O. . .O) and the angle of its bend
H–O. . .O are used as the principal parameters. The dependences
found can be used also to evaluate H-bond energies and vibra-
tional frequencies when basing on the results of the structural
analysis (X-ray, neutrons).

We believe that results of this work (together with data of [6,7])
show that designing of potential of hydrogen bond on the basis of
spectroscopic experiment is not a hopeless problem. The solutions

offered here can be considered as the very first approach which can
be improved by refining of the made assumptions.
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Appendix A. Molecular dynamics computational details

We used molecular dynamics models for water consisting of
N = 3456 molecules at different temperatures and density 1 g/cm3.
Models were generated with the Poltev–Malenkov’s potential of
interaction [15,16] which is analogous to well-known three cen-
ter SPC potential. All the characteristics considered below were
averaged using ten independent models. According to the found
solution for potential of hydrogen bond (see Sections 1 and 2), water
molecules were considered as partners in H-bond if RO. . .O < 3.05 Å.
For each pair of molecules the geometrical parameters of the given
H-bond were taken from the model. The angle � necessary for calcu-
lations was found as follows. In a plane perpendicular to two O–H
groups of proton-accepting water molecule and passing through
bisector of the H–O–H angle we constructed directing vectors for
two lone pairs with a tetrahedral angle between them. The angles
between these vectors and a direction O. . .O: �1 and �2 were cal-
culated, and the least of these angles gave value of � for the given
configuration of hydrogen bond.

Vibrational frequencies �OH were calculated for each O–H. . .O
fragment using formulas of sections 1 or 2 and distributions of
all parameters were constructed. Corresponding histograms were
compared with results of theoretical calculations and also with
the experimental spectra. In a similar way energies of hydrogen
bonds were calculated and their distributions were constructed for
various temperatures.
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