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Exploring volume, compressibility and hydration
changes of folded proteins upon compression

Vladimir P. Voloshin,a Nikolai N. Medvedev,ab Nikolai Smolin,c Alfons Geigerd and
Roland Winter*d

Understanding the physical basis of the structure, stability and function of proteins in solution, including

extreme environmental conditions, requires knowledge of their temperature and pressure dependent

volumetric properties. One physical–chemical property of proteins that is still little understood is their partial

molar volume and its dependence on temperature and pressure. We used molecular dynamics simulations

of aqueous solutions of a typical monomeric folded protein, staphylococcal nuclease (SNase), to study

and analyze the pressure dependence of the apparent volume, Vapp, and its components by the Voronoi–

Delaunay method. We show that the strong decrease of Vapp with pressure (bT = 0.95 � 10�5 bar�1, in very

good agreement with the experimental value) is essentially due to the compression of the molecular

volume, VM, ultimately, of its internal voids, Vempty
M . Changes of the intrinsic volume (defined as the Voronoi

volume of the molecule), the contribution of the solvent to the apparent volume, and of the contribution

of the boundary voids between the protein and the solvent have also been studied and quantified in detail.

The pressure dependences of the volumetric characteristics obtained are compared with the temperature

dependent behavior of these quantities and with corresponding results for a natively unfolded polypeptide.

Introduction

The physical–chemical properties of proteins, which include
their functional and unique three dimensional structure, their
stability and conformational dynamics, are coupled to varying
degrees and result from the specific amino acid sequence of
which they are composed.1–3 Understanding the relationship
between the amino acid sequence and these properties has
fascinated protein chemists and physicists for decades now.
One physical–chemical property of proteins that has received
comparably little attention over the years is its partial molar
volume and its dependence on temperature and pressure. Also
the factors contributing to the volumetric properties of proteins
have long eluded understanding. This holds in particular true
for pressure dependent volumetric properties despite the fact
that it has already been known by Nobel laureate P. W. Bridgman in
1914 that the application of pressure can lead to the unfolding of
proteins.4 Since then, many studies have been carried out employing
pressure to study protein dissociation and unfolding.5–20 According

to Le Châtelier’s principle, the effect of pressure necessarily
arises because the volume of the dissociated or unfolded state
is smaller than that of the associated or folded state. Under-
standing of both, the temperature and pressure dependent
volumetric changes are prerequisite for understanding the
physical basis of protein structure, stability and function,20–25

including the influence of extreme environmental conditions
such as those encountered in the deep sea where pressures up
to the kbar level are reached. In particular, since the 1970’s it
has been known6–9 that appropriate modeling of experimental
p-T phase diagrams for protein folding requires, in addition to
the difference in enthalpy, entropy and heat capacity between the
unfolded (U) and folded (F) state, knowledge of the difference in
their volumes, DVu, but also in their thermal expansivity, Dau,
and isothermal compressibility, DbT,u. At low temperatures, DVu

has been found to be generally negative (i.e., the application of
pressure leads to unfolding under these conditions), but decreases
in absolute value approaching zero as temperature increases, and
can even become positive at high temperatures,6,8,10–15,23–26 indicating
that the thermal expansivity of the unfolded state is larger than that
of the folded state. The change in the partial molar volume
(or the apparent volume, Vapp, i.e. the partial molar volume at
infinite dilution) upon pressure-induced unfolding of a protein,
Vapp,U � Vapp,F, is generally thought to be due to the opening and
subsequent filling of void volume and the increase in hydrophilic
hydration of charged and polar polypeptide groups upon exposure
to the bulk solvent. The method of dissecting this volume change,
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and hence Vapp, into its different contributions and their magnitudes
are still a matter of debate, however.5,21–27

In this study, we analysed the contributions to the measured
volumetric properties of a well characterized monomeric folded
protein, staphylococcal nuclease (SNase), and its pressure
dependence, i.e. the isothermal compressibility, using results
from molecular dynamics (MD) simulations and the dissection
of the MD model into Voronoi and Delaunay shells. The theoretical
data obtained are then compared with experimental data as
determined by densitometry.15 The volumetric properties are
resolved into their various structural, interfacial and hydrational
contributions, aiming to help quantitatively understand the
volumetric properties of proteins upon compression, which is
prerequisite for understanding pressure-induced conformational
changes of proteins and of biomolecules in general.

Methods
Molecular dynamics simulation setup

We used MD simulations to study the SNase molecule in aqueous
solution for five different pressures (from 1 to 2000 bar) at constant
temperature of 300 K. The simulations were carried out using the
simulation package GROMACS28,29 with the OPLS force field30 for
the protein and the SPC/E water model.31 An initial energy mini-
mization of the SNase structure was performed using the steepest
descent method for 1000 steps, after that the protein was solvated
in a rectangular water box with a minimum of 15 Å from the
surface of the protein to a face of the model box. Thus, the
SNase molecule was surrounded by 16 838 water molecules.
The Particle Mesh Ewald (PME) method32,33 was used to
calculate the electrostatic interactions, and a cut-off of 9 Å
was used for the short-range Van der Waals interactions. The
MD simulations were carried out with an integration time
step of 2 fs. After 1 ns equilibration, production simulations
were performed in the NPT ensemble using the Nose–Hoover
thermostat34,35 and a Parrinello–Rahman barostat36,37 with
relaxation times of 2.5 ps and 1.0 ps, respectively. The produc-
tion run was carried out for 50 ns for each pressure. 5000
equally spaced snapshots of the production run were used for
averaging the volumetric properties of the protein.

Voronoi–Delaunay method

The Voronoi–Delaunay method has been widely used in bio-
molecular science over the years38–44 and has been described in
detail elsewhere.45–47 Recently, we started applying this method also
to calculations of volumetric properties of biomolecular systems. In
particular, the method was used to reveal volumetric properties of
polypeptides, amphiphilic molecules, and of methane.48–53

The first step is the calculation of the Voronoi–Delaunay
tessellation for given configurations of the molecular dynamics
model of the solution. The water molecules are considered here
as single spheres. The atoms of the dissolved molecule are
considered as overlapping spheres with diameters equal to the
values of their Lennard-Jones parameters, s, used in the
molecular dynamics simulation. For the volumetric analysis

we need to take into account the size of the atoms. Thus, instead of
the classical Voronoi–Delaunay tessellation (which is defined for
discrete points) we have to use the S-tessellation (additively
weighted)42,45,54 or radical (power) tessellation55,56 method, which
take into account atomic radii. As in our last works, we used the
radical tessellation approach, because an efficient calculation of
the empty volume inside systems of overlapping spheres has
been implemented only for this type of the tessellation.57 The
S-tessellation was used in ref. 48 and it was found that the physical
conclusions derived do not depend on which one of these two
tessellations was used. The calculation of the Voronoi–Delaunay
tessellation is a straightforward task. In this work, we used our
algorithms, but programs for calculation of radical tessellations
are available also in standard geometry libraries.

The second step is the decomposition of the tessellation into
Voronoi and Delaunay shells around the solute molecule.38,48,50 To
this end, we can define the boundary Voronoi shell of the solute
molecule, which consists of those Voronoi cells of the protein
atoms that are adjacent to at least one molecule of the solvent.
With this information in hand, one can select all subsequent
Voronoi shells, both going outside (to the solvent) and inside the
solute molecule (if it is large enough).50 The decomposition into
Voronoi shells can then be used for determining Delaunay shells.
A Delaunay shell is defined as the set of Delaunay simplexes with
vertices (atoms) belonging to two neighboring Voronoi shells.
Fig. 1 (thick dotted lines) illustrates the boundary Delaunay shell.
As the Delaunay simplexes are centered on the void space between
atoms, this construction allows the definition of the empty space
at the boundary between protein and solvent (denoted ‘‘boundary
voids’’ in the following, green area in Fig. 1).

Volumetric investigations require calculation of the empty or
occupied volume of Voronoi cells and Delaunay simplexes. This is
not a simple task for an ensemble of overlapping spheres, such as
encountered for molecular systems. An efficient solution to this
problem has been found recently with the help of a special
geometrical construction, called Voronoi–Delaunay subsimplex.58

Using this approach, we can determine the empty volume of the
entire Voronoi and Delaunay shells as well as their intersections.57

Volumetric characteristics

The apparent volume of a solute in solution from a molecular
dynamics model can be calculated, by definition, as the differ-
ence between the volume of the model box containing the
solution, and the volume of the model box containing the same
amount of the pure solvent:53,59,60

Vapp = V solution
box � V solvent

box (1)

As in this case Vapp would be determined as a small difference
between two large numbers, it is preferable to determine Vapp as
the asymptotic value of

Vapp(R) = V(R) � N(R)/r0, (2)

where V(R) is the volume including both the solute and its
hydration shell.52,53,61–63 The parameter R characterizes the size
of this region. N(R) is the number of the solvent molecules,
whose centers are located inside the selected volume, and r0 is
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the number density of pure (bulk) water. This formula, which is
a variant of the Kirkwood–Buff integral, can generally be used,
but becomes more preferable if the solute molecule perturbs
the solvent on short distances only, like it was shown for
proteins.48 Recently, we proposed to calculate V(R) as the sum
of the Voronoi cell volumes of all atoms with centers inside a
defined R-surface. This method turned out to be very efficient,
and we denoted it combined method in our works.48,52,53

The apparent volume of the solute molecule in solution can
be divided into the intrinsic volume, and the contribution of the
solvent, DV:

Vapp = Vint + DV. (3)

Here, the intrinsic volume is assigned to the Voronoi volume of
the molecule in solution, VVor:

40,63

Vapp = VVor + DV. (4)

In Fig. 1, the Voronoi volume of the solute is marked by thick black
lines. From the Voronoi tessellation of the computer model of a
solution, VVor is readily obtained as the sum of the volumes of the
Voronoi cells of all solute atoms. With the knowledge of Vapp and
VVor we can then determine the solvent contribution,

DV = Vapp � VVor. (5)

This is a general definition of the solvent contribution
and includes all possible contributions of the solvent to

the apparent volume apart from the volume assigned to the
solute molecule.

The Voronoi volume of the solute molecules can be dissected
into the molecular volume, VM, and the part of boundary empty
space, V M

B , that is assigned to the solute,

VVor = VM + V M
B . (6)

Thus, the Voronoi volume of the molecule can be interpreted as
the volume of a cavity in solution where the solute molecule has
been placed.

The molecular volume, VM, is depicted in Fig. 1 by a thick
red line. It contains the van der Waals volume of the molecule,
V vdW

M , and the internal void volume, V empty
M :

VM = V vdW
M + V empty

M . (7)

In our Voronoi–Delaunay method, we can explicitly determine all
these regions (Fig. 1), and calculate their volumes.57 Please recall
that the value VvdW

M is defined as the volume of the entirety of
spheres (atoms of the molecule), and can be easily calculated as the
sum of the occupied volumes of their Voronoi cells.57,64 The value of
Vempty

M is the empty volume of the Delaunay simplexes, which
represent the inner voids of the dissolved molecule (i.e. the Delaunay
simplexes having vertices that lie only on the atoms of the solute
molecule).50 Some volumetric characteristics can be calculated in
different ways. For example, VM

B can be calculated from eqn (6) as
remainder of VVor and VM, or directly, as the empty volume of the
intersection of the boundary Voronoi and Delaunay shells.57

In addition to eqn (5), the contribution DV can also be
defined directly as the difference between the volume of the
hydration shell surrounding the solute and the volume of the
same amount of water molecules (Nhyd) in the bulk:60

DV = Vhyd � Nhyd/r0. (8)

Here, r0 is the density of bulk water at the same temperature and
pressure. However, in this approach, one has to define explicitly the
borders of the hydration shell. It turns out that the result is very
sensitive to the definition of this shell and may lead to erroneous
results as it was discussed before.48 However, in our Voronoi–
Delaunay approach, where the border is well defined as the Voronoi
surface of the solute molecule, formulas (5) and (8) are equivalent.53

Using eqn (6) and (7) we can write a more detailed decomposition
of the apparent volume, instead of eqn (4):

Vapp = VvdW
M + Vempty

M + VM
B + DV, (9)

where the DV value can be calculated by eqn (5), or independently
by eqn (8).

Using the boundary Delaunay shell, we can calculate the
boundary voids, VB, between the solute and solvent (green area
(dark and light) in Fig. 1). The border of the Voronoi volume of
the solute molecule divides this volume into two parts:

VB = VM
B + VS

B. (10)

V M
B is the empty space closest to the solute molecule (dark

green in Fig. 1). It belongs to the solute, not to the surrounding

Fig. 1 2D illustration of the volumetric characteristics of the Voronoi–Delaunay
method. Dark disks designate the solute molecule, blue and empty disks in the
surroundings represent water molecules. The molecular volume, VM is outlined
by a thick red line. It contains the van der Waals volume of the molecule
VvdW

M (union of dark discs) and the internal void contribution, V empty
M (colored in

pink). The surface of the molecular volume consists of parts of atomic surfaces
and parts of Delaunay simplex faces. The Voronoi volume of the molecule, VVor,
is bounded by a thick black line. It contains the molecular volume VM and part of
the boundary voids, VM

B (dark green). The total boundary empty volume, VB, is
shown in green (dark and light). It includes all voids inside the boundary Delaunay
shell, shown by thick dotted lines (green and pink). The boundary empty volume
is divided by the Voronoi surface of the solute into a part assigned to the solute
molecule (VM

B ) and a part belonging to the solvent, VS
B (light-green), which is also

the inner part of the empty volume of the first Voronoi shell. The outer part of
the first Voronoi shell is shown in yellow. Voronoi cells and Delaunay simplexes
of the solution are shown by thin solid and dotted lines, respectively.
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water molecules. In contrast, the second part (light green in
Fig. 1) is part of the solvent.

Results and discussion
The Voronoi–Delaunay method for dissecting the apparent
volume of a protein

Fig. 2 shows the pressure dependence of the apparent volume,
Vapp, of SNase at ambient temperature and its components, VVor

and DV, as defined in eqn (4) The compressibility of Vapp is
positive (see also Table 1), and its value is in very good
agreement with the experimental value bT = 1.1� 0.2� 10�5 bar�1

at 298 K as obtained from direct densitometric measurements.15

What we can also see is that the observed decrease of the apparent
volume with pressure is the result of the competition between the
decrease of the intrinsic (Voronoi) volume of the solute (VVor) and
the increase of the contribution of the solvent (DV).

Fig. 3 reveals the strong decrease of VVor upon pressuriza-
tion. Pressure reduces both, the molecular volume VM and
the boundary empty volume assigned to the molecule, V M

B .

Please note that that the decrease of VM is provided solely by
the internal voids of the solute, i.e. Vempty

M because the van der
Waals volume is not sensitive to pressure (Fig. 4a).51 The same
is true for the temperature dependence (Fig. 4b): the expansion
of VM is completely determined by the expansion of the empty
space, V empty

M .
Fig. 5a reveals a general shrinking of the void volume at the

solute/solvent interface upon compression. The total void volume,
VB, decreases by B4%/kbar and its components VM

B and VS
B exhibit

a similar pressure dependence. A parallel behavior of VM
B and VS

B

was also found for the temperature dependence (Fig. 5b).49

Comparing the pressure and temperature dependence of
Vempty

M (Fig. 4), we note that a change in temperature by 200 K and
a pressure change of 2000 bar lead to similar changes of the value
of Vempty

M (E0.5� 0.1 nm3). On the other hand, a comparison with
the changes of the boundary volume of the solute over the same
temperature and pressure range reveals that the boundary voids,
VB, are relatively more sensitive to temperature than to pressure
(with absolute value changes of 3.1 and 0.6 nm3, respectively). The
temperature-induced change of the volume of the boundary voids
is 5 times larger than the corresponding pressure-induced change.

Thus, Fig. 3 to 5 indicate that the pressure dependence of
the Voronoi volume, VVor, of the solute is caused both by a
pronounced decrease of the molecular volume (due to a
decrease of the internal void volume), and by the densification
of the protein/solvent interface upon compression. A similar
situation, but with opposite sign, is observed for the tempera-
ture dependence of the Voronoi volume (see ref. 49 and Fig. 4
and 5). It is caused both by a pronounced increase of the
molecular volume (due to the increase of the internal void
volume, V empty

M ), and by the expansion of the protein/solvent
interface with temperature.

To illustrate the origin of the pressure dependence of the
solvent contribution DV, we follow eqn (8). In our approach, the
hydration shell is represented by Voronoi shells, and it has

Fig. 2 The apparent volume, Vapp, and its components, VVor and DV, of
SNase as a function of pressure at T = 300 K. Vertical lines show the mean
square displacement of the calculated values (over 5000 independent
configurations). Fluctuations of the apparent volume are mainly determined
by the solvent.

Table 1 Coefficients of isothermal compressibility of SNase, bT =
�(dV/dp)/Vapp/bar�1, for Vapp and its various components (T = 300 K)

�(dVapp/dp)/Vapp 0.95 � 10�5

�(dVM/dp)/Vapp 1.00 � 10�5

�(dDV/dp)/Vapp �0.88 � 10�5

�(dVvdW
M /dp)/Vapp 0.05 � 10�5

�(dVempty
M /dp)/Vapp 0.95 � 10�5

�(dVVor/dp)/Vapp 1.83 � 10�5

�(dVM
B /dp)/Vapp 0.83 � 10�5

�(dVB/dp)/Vapp 1.76 � 10�5

�(dVS
B/dp)/Vapp 0.93 � 10�5

�(dVS,bulk
B /dp)/Vapp 1.81 � 10�5

Fig. 3 Pressure dependence of the components of the intrinsic (Voronoi)
volume of SNase at T = 300 K (VVor = VM + V M

B ).
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been shown that only the first Voronoi shell experiences
significant differences of the water density compared to bulk
water.51 Thus we can write

DV E V1 � n1v0, (11)

where V1 is the mean volume of the first Voronoi shell around
the protein molecule, n1 is the mean number of water mole-
cules in the first Voronoi shell, and v0 is the mean volume of a
Voronoi cell for bulk water molecules (v0 = 1/r0). As the size of
the water molecule is constant, we can also write:

DV E DV0 = V empty
1 � n1v empty

0 , (12)

where Vempty
1 is the mean empty volume in the first Voronoi shell

(light-green and yellow parts in Fig. 1), and vempty
0 is the corres-

ponding mean empty volume of the Voronoi cell for bulk water. We
calculated the values of Vempty

1 and n1vempty
0 as well as their difference

DV0 = Vempty
1 � n1vempty

0 for our models of SNase solutions at different
pressures and temperatures as shown in Fig. 6. We clearly see that
DV0 describes the pressure and temperature dependence of DV,
obtained by eqn (5), very well (see Fig. 2 in this paper and Fig. 3 in
ref. 49). A small numerical difference between DV0 and DV supports
our assumption that the first Voronoi shell provides a good approxi-
mation for the hydration shell around the polypeptide molecule.

Fig. 4 Components of the molecular volume, VM (VM = VvdW
M + Vempty

M ). (a) Pressure dependence, (b) temperature dependence (adopted from ref. 49).
It is clearly seen that the internal voids make up the main contribution to the pressure and temperature dependence of the molecular volume, VM.

Fig. 5 The boundary volume, VB, and its components (VB = VM
B + VS

B) of SNase. (a) Pressure dependence, (b) temperature dependence (adopted from ref. 49).
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Hence, the pressure dependence of the solvent contribution DV
to the apparent volume, Vapp, is determined by the pressure
dependence of the hydration water’s empty space compared to
the pressure dependence of the empty space in bulk water. In
particular, as we can see in Table 1, the void volume V S

B in the
hydration shell decreases to a lesser extent than the voids V S,bulk

B in a
comparable bulk water layer (ref. 51), which is reflected in a two-fold
larger contribution of the latter to the (negative) compressibility. As
volume is reciprocal to density, we note that the water density in the
first Voronoi shell is higher than in bulk water. Hence, the
contribution DV of the solvent is negative. This difference deceases
slightly with increasing pressure because the density of the
hydration shell increases less than that of bulk water (see
Fig. 6a). A similar behavior holds true for the temperature
dependence of DV. The water density in the first Voronoi shell
is also higher than in the bulk, rendering DV negative, and the
density difference decreases slightly with increasing tempera-
ture. However, in this case, the density of the hydration shell
decreases more than that of bulk water (Fig. 6b). Of note, the
density changes discussed here are an outcome of averaging
over different parts of the protein surface, and in general
should be different for charged and non-polar sites. The
Voronoi–Delaunay approach introduced here could in fact be
used to analyze different sites.52

Recall, as demonstrated in ref. 51, that we can write eqn (12)
in a different form:

DV = V S
B � fn1vempty

0 , (13)

where f = 0.485.51 The entire Voronoi shell is used in eqn (12) to
determine DV, whereas eqn (13) contains only the inner part of
the first Voronoi shell, V S

B (see Fig. 1). The subtrahend of
eqn (13) is the void volume of a water layer in bulk water that
is comparable to the volume V S

B and had been called V S,bulk
B in

ref. 51. Using eqn (13) and (6), we can rewrite eqn (4) in a
simple form:

Vapp = VM + VB � fn1vempty
0 , (14)

where the total boundary volume, VB, is an explicit term of the
equation now.

Small kinks observed in the temperature dependent data of
V empty

1 and n1vempty
0 in Fig. 6 are probably due to fluctuations of n1

values, which are due to slightly different configurations of the
protein molecule, possibly reflecting an insufficient averaging
over the complete ensemble of configurations at the given state
point. What is clear, however, is that their difference (eqn (12)) is a
rather smooth function of temperature and pressure. This
indicates that the properties of the hydration shell are not very
sensitive to conformational changes of the molecule.

Alternative approaches for dissecting the apparent volume of a
protein

There are also alternative approaches possible for partitioning
of the apparent volume, Vapp. Above, we used a geometrical
approach to select shells related with the solute molecule. In
another approach, following Chalikian et al.,21 one might
decompose the apparent volume as:

Vapp = VM + VT + VI, (15)

where VT is the ‘‘thermal volume’’, which is the volume of the
void space surrounding the solute molecule as a result of
thermally induced mutual molecular vibrations and reorien-
tations of the solute and the solvent, and VI is the ‘‘interaction
volume’’, which represents the change in the solvent volume
under the influence of solute–solvent interactions.21 It is generally
assumed that VI predominantly reflects a decrease in the solvent

Fig. 6 The mean empty volume of the first Voronoi shell, V empty
1 , the corresponding volume for bulk water, n1v

empty
0 , and their difference DV0 (eqn (12))

for SNase as function of pressures (a) and temperatures (b). The vertical dashed line marks the temperature of T = 300 K, for which the pressure
dependent calculations have been carried out.
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volume that results from hydration of polar and charged solute
groups (the so-called electrostriction effect). Please note that the
parameters VT and VI have no direct geometrical interpretation

and are hence difficult to quantify. The volume term VT is
related to the fact that the ‘‘cavity’’ of the solute molecule
created by inserting the molecule into the solvent should be
larger than its molecular volume, and this extra volume should
be sensitive to temperature.21

Denoting the sum of the non-molecular components VT and
VI as VTI, we obtain from eqn (15)

VTI = Vapp � VM. (16)

In analogy to eqn (5), one can denote the parameter VTI the
‘‘contribution of the environment’’ of the solute. It differs from
the above defined ‘‘contribution of the solvent’’, DV, by the
volume of the boundary voids assigned to the molecule. Using
eqn (9) and (7) we can rewrite eqn (16):

VTI = V M
B + DV (17)

Thus, the value of VTI can be represented by our volumetric
parameters, which can be calculated from molecular dynamics
models. Fig. 7 depicts the components of eqn (17).

We notice that VTI is positive and rather insensitive to
pressure. Its components change with pressure but they
exhibit an opposite behavior: the boundary volume, V M

B , of
the molecule decreases, whereas the solvent contribution, DV,

Fig. 7 Pressure dependence of the volume VTI and its components VM
B

and DV for SNase.

Fig. 9 Temperature dependence of VTI = VM
B + DV for SNase and hIAPP represented in normalized coordinates, T/T0 and VTI/VTI(T0), where T0 = 300 K. The

dashed line is a bisector of the coordinate system (a). Pressure dependence of VTI = VM
B + DV represented in normalized coordinates. p/p0 and VTI/VTI(p0),

where p0 = 1000 bar (b).

Fig. 8 Temperature dependence of the parameter VTI = VM
B + DV for SNase (a) and hIAPP (b) at ambient pressure. Dashed lines are linear extrapolations

of the calculated curves.
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increases upon compression. As the interaction volume VI

(via electrostatic and dipole–dipole protein–solute interactions)
is not expected to change the density of water around the
protein significantly in the pressure range covered here, the
pressure dependence of the thermal volume VT will be small
as well.

To reveal also the temperature dependence of VTI, we
calculated this parameter for our MD models of SNase and
hIAPP at different temperatures. As shown in Fig. 8, VTI is
linearly temperature dependent for both molecules.

In case the interaction volume VI is independent of
temperature, the VTI data shown in Fig. 8 would imply a
pronounced and linear temperature dependence of the thermal
volume, VT. Interestingly, the temperature dependence of VTI

seems to be universal for both peptides. This is better seen in
Fig. 9a, which depicts the temperature dependence of VTI when
normalized to room temperature conditions (T = 300 K). In
contrast, the normalized pressure dependent data (Fig. 9b)
reveal that VTI is essentially independent of pressure.

Conclusions

We used the decomposition of a molecular dynamics model of
SNase in its natively folded state in aqueous solution into
Voronoi and Delaunay shells to analyze the pressure depen-
dence of the apparent volume of the protein, Vapp, and its
contributing components: the Voronoi volume of the solute
molecule, VVor, which is considered as the intrinsic volume, the
molecular volume, VM, which consists of the van der Waals
volume, V vdW

M , and its internal empty voids, V empty
M , and the

contribution of the solvent, DV, with respect to bulk water.
Additionally, we geometrically separated the boundary volume
VB at the solute/solvent interface into two parts, which are
assigned to the macromolecule, VM

B , and the solvent, VS
B. The

coefficient of the isothermal compressibility of Vapp, bT,app, and its
components have also been calculated. The calculated value of
bT,app is in good agreement with the experimental data obtained
by densitometric measurements.15 The pressure dependences are
compared with the temperature dependences, obtained in our
previous study.49

The Voronoi volume of the molecule consists of the molecular
volume and of a part of boundary voids assigned to the solute,
VVor = VM + V M

B . It defines the ‘‘cavity’’ in the solvent where the
protein has been placed. Our results show a strong decrease of
both components of the Voronoi volume with pressure: (i) of the
molecular volume, VM, owing to a pronounced decrease of its
internal void volume, V empty

M , upon compression, with isothermal
compressibility values of B0.95 � 10�5 bar�1, and (ii) of the
boundary voids belonging to the molecule, with compressibility
values of B0.83 � 10�5 bar�1. The pressure dependence of the
Voronoi volume, VVor, is opposite to the temperature dependence.
VVor increases with temperature, mainly because of a strong
and universal increase of the boundary volume V M

B of the solute
with temperature.

The behavior of the contribution of the solvent, DV, upon
changes of temperature and pressure is a result of the competi-
tion between changes of the density of water in the hydration
shell of the solute and that of bulk water. At ambient condi-
tions, the value of DV for SNase is negative, indicating that the
hydration water is denser than bulk water. With increasing
pressure, the void volume in the hydration shell decreases to
a lesser extent than the voids in bulk water. Conversely,
with increasing temperature the void volume of the hydration
shell increases more than that of bulk water. The diff-
erent temperature and pressure dependent behavior of the
hydration and bulk water produces, however, similar results
for their DV dependences.

We conclude that the decrease of Vapp of SNase with
pressure is essentially due to the compression of the molecular
volume. Thus, the remainder of the apparent and the molecular
volumes, Vapp � VM, is practically insensitive to pressure.
On the other hand, we found that it increases linearly with
temperature. Of note, this remainder is equal to the sum of VT + VI,
where VT is the ‘‘thermal volume’’ and VI the solvent ‘‘interaction
volume’’ as defined by Chalikian et al.21

A closer inspection of Fig. 3 to 5 reveals a more pronounced
decrease of the empty void volume, V empty

M , and a retarded
decrease of the boundary volume, V M

B , around 1500 bar. This
points to a minor expansion of the SNase molecule due to
pressure-induced conformational fluctuations in this pressure
range, leading to an increase of the interfacial region and its
void volume. In fact, this is the pressure range, where the onset
of the pressure-induced unfolding of SNase has been recorded
experimentally.13 Verification of these assumptions requires
further investigations, however.

Finally, we hope that our results help to understand and
decompose the volumetric properties of biomolecular systems,
including their pressure dependence. Our results show that the
volumetric properties of proteins are strongly coupled to
changes of the hydrational properties at their interface with
respect to the bulk properties of the solvent, as well as to the
compressibility of the internal voids of the protein. Using this
Voronoi–Delaunay approach might enable us to unravel the
various volumetric contributions of even more complex bio-
logically relevant systems and processes in future studies,
including, for example, enzymatic reactions carried out under
high pressure conditions (baroenzymology).
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